]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/api/search/db_search_builder.py
62b4e1b51986b3a29becefee1078e969b5ad168f
[nominatim.git] / nominatim / api / search / db_search_builder.py
1 # SPDX-License-Identifier: GPL-3.0-or-later
2 #
3 # This file is part of Nominatim. (https://nominatim.org)
4 #
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
7 """
8 Convertion from token assignment to an abstract DB search.
9 """
10 from typing import Optional, List, Tuple, Iterator, Dict
11 import heapq
12
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 import nominatim.api.search.db_search_lookups as lookups
19
20
21 def wrap_near_search(categories: List[Tuple[str, str]],
22                      search: dbs.AbstractSearch) -> dbs.NearSearch:
23     """ Create a new search that wraps the given search in a search
24         for near places of the given category.
25     """
26     return dbs.NearSearch(penalty=search.penalty,
27                           categories=dbf.WeightedCategories(categories,
28                                                             [0.0] * len(categories)),
29                           search=search)
30
31
32 def build_poi_search(category: List[Tuple[str, str]],
33                      countries: Optional[List[str]]) -> dbs.PoiSearch:
34     """ Create a new search for places by the given category, possibly
35         constraint to the given countries.
36     """
37     if countries:
38         ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
39     else:
40         ccs = dbf.WeightedStrings([], [])
41
42     class _PoiData(dbf.SearchData):
43         penalty = 0.0
44         qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
45         countries=ccs
46
47     return dbs.PoiSearch(_PoiData())
48
49
50 class SearchBuilder:
51     """ Build the abstract search queries from token assignments.
52     """
53
54     def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
55         self.query = query
56         self.details = details
57
58
59     @property
60     def configured_for_country(self) -> bool:
61         """ Return true if the search details are configured to
62             allow countries in the result.
63         """
64         return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65                and self.details.layer_enabled(DataLayer.ADDRESS)
66
67
68     @property
69     def configured_for_postcode(self) -> bool:
70         """ Return true if the search details are configured to
71             allow postcodes in the result.
72         """
73         return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74                and self.details.layer_enabled(DataLayer.ADDRESS)
75
76
77     @property
78     def configured_for_housenumbers(self) -> bool:
79         """ Return true if the search details are configured to
80             allow addresses in the result.
81         """
82         return self.details.max_rank >= 30 \
83                and self.details.layer_enabled(DataLayer.ADDRESS)
84
85
86     def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87         """ Yield all possible abstract searches for the given token assignment.
88         """
89         sdata = self.get_search_data(assignment)
90         if sdata is None:
91             return
92
93         near_items = self.get_near_items(assignment)
94         if near_items is not None and not near_items:
95             return # impossible compbination of near items and category parameter
96
97         if assignment.name is None:
98             if near_items and not sdata.postcodes:
99                 sdata.qualifiers = near_items
100                 near_items = None
101                 builder = self.build_poi_search(sdata)
102             elif assignment.housenumber:
103                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104                                                    TokenType.HOUSENUMBER)
105                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
106             else:
107                 builder = self.build_special_search(sdata, assignment.address,
108                                                     bool(near_items))
109         else:
110             builder = self.build_name_search(sdata, assignment.name, assignment.address,
111                                              bool(near_items))
112
113         if near_items:
114             penalty = min(near_items.penalties)
115             near_items.penalties = [p - penalty for p in near_items.penalties]
116             for search in builder:
117                 search_penalty = search.penalty
118                 search.penalty = 0.0
119                 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
120                                      near_items, search)
121         else:
122             for search in builder:
123                 search.penalty += assignment.penalty
124                 yield search
125
126
127     def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128         """ Build abstract search query for a simple category search.
129             This kind of search requires an additional geographic constraint.
130         """
131         if not sdata.housenumbers \
132            and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133             yield dbs.PoiSearch(sdata)
134
135
136     def build_special_search(self, sdata: dbf.SearchData,
137                              address: List[TokenRange],
138                              is_category: bool) -> Iterator[dbs.AbstractSearch]:
139         """ Build abstract search queries for searches that do not involve
140             a named place.
141         """
142         if sdata.qualifiers:
143             # No special searches over qualifiers supported.
144             return
145
146         if sdata.countries and not address and not sdata.postcodes \
147            and self.configured_for_country:
148             yield dbs.CountrySearch(sdata)
149
150         if sdata.postcodes and (is_category or self.configured_for_postcode):
151             penalty = 0.0 if sdata.countries else 0.1
152             if address:
153                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154                                                  [t.token for r in address
155                                                   for t in self.query.get_partials_list(r)],
156                                                  lookups.Restrict)]
157                 penalty += 0.2
158             yield dbs.PostcodeSearch(penalty, sdata)
159
160
161     def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162                                  address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163         """ Build a simple address search for special entries where the
164             housenumber is the main name token.
165         """
166         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167         expected_count = sum(t.count for t in hnrs)
168
169         partials = {t.token: t.count for trange in address
170                        for t in self.query.get_partials_list(trange)}
171
172         if expected_count < 8000:
173             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174                                                  list(partials), lookups.Restrict))
175         elif len(partials) != 1 or list(partials.values())[0] < 10000:
176             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177                                                  list(partials), lookups.LookupAll))
178         else:
179             sdata.lookups.append(
180                 dbf.FieldLookup('nameaddress_vector',
181                                 [t.token for t
182                                  in self.query.get_tokens(address[0], TokenType.WORD)],
183                                 lookups.LookupAny))
184
185         sdata.housenumbers = dbf.WeightedStrings([], [])
186         yield dbs.PlaceSearch(0.05, sdata, expected_count)
187
188
189     def build_name_search(self, sdata: dbf.SearchData,
190                           name: TokenRange, address: List[TokenRange],
191                           is_category: bool) -> Iterator[dbs.AbstractSearch]:
192         """ Build abstract search queries for simple name or address searches.
193         """
194         if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
195             ranking = self.get_name_ranking(name)
196             name_penalty = ranking.normalize_penalty()
197             if ranking.rankings:
198                 sdata.rankings.append(ranking)
199             for penalty, count, lookup in self.yield_lookups(name, address):
200                 sdata.lookups = lookup
201                 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
202
203
204     def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
205                           -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
206         """ Yield all variants how the given name and address should best
207             be searched for. This takes into account how frequent the terms
208             are and tries to find a lookup that optimizes index use.
209         """
210         penalty = 0.0 # extra penalty
211         name_partials = {t.token: t for t in self.query.get_partials_list(name)}
212
213         addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
214         addr_tokens = list({t.token for t in addr_partials})
215
216         partials_indexed = all(t.is_indexed for t in name_partials.values()) \
217                            and all(t.is_indexed for t in addr_partials)
218         exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
219
220         if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
221             yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
222             return
223
224         # Partial term to frequent. Try looking up by rare full names first.
225         name_fulls = self.query.get_tokens(name, TokenType.WORD)
226         if name_fulls:
227             fulls_count = sum(t.count for t in name_fulls)
228             # At this point drop unindexed partials from the address.
229             # This might yield wrong results, nothing we can do about that.
230             if not partials_indexed:
231                 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
232                 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
233             # Any of the full names applies with all of the partials from the address
234             yield penalty, fulls_count / (2**len(addr_tokens)),\
235                   dbf.lookup_by_any_name([t.token for t in name_fulls],
236                                          addr_tokens,
237                                          fulls_count > 30000 / max(1, len(addr_tokens)))
238
239         # To catch remaining results, lookup by name and address
240         # We only do this if there is a reasonable number of results expected.
241         exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
242         if exp_count < 10000 and all(t.is_indexed for t in name_partials.values()):
243             lookup = [dbf.FieldLookup('name_vector', list(name_partials.keys()), lookups.LookupAll)]
244             if addr_tokens:
245                 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
246             penalty += 0.35 * max(1 if name_fulls else 0.1,
247                                   5 - len(name_partials) - len(addr_tokens))
248             yield penalty, exp_count, lookup
249
250
251     def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
252         """ Create a ranking expression for a name term in the given range.
253         """
254         name_fulls = self.query.get_tokens(trange, TokenType.WORD)
255         ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
256         ranks.sort(key=lambda r: r.penalty)
257         # Fallback, sum of penalty for partials
258         name_partials = self.query.get_partials_list(trange)
259         default = sum(t.penalty for t in name_partials) + 0.2
260         return dbf.FieldRanking('name_vector', default, ranks)
261
262
263     def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
264         """ Create a list of ranking expressions for an address term
265             for the given ranges.
266         """
267         todo: List[Tuple[int, int, dbf.RankedTokens]] = []
268         heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
269         ranks: List[dbf.RankedTokens] = []
270
271         while todo: # pylint: disable=too-many-nested-blocks
272             neglen, pos, rank = heapq.heappop(todo)
273             for tlist in self.query.nodes[pos].starting:
274                 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
275                     if tlist.end < trange.end:
276                         chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
277                         if tlist.ttype == TokenType.PARTIAL:
278                             penalty = rank.penalty + chgpenalty \
279                                       + max(t.penalty for t in tlist.tokens)
280                             heapq.heappush(todo, (neglen - 1, tlist.end,
281                                                   dbf.RankedTokens(penalty, rank.tokens)))
282                         else:
283                             for t in tlist.tokens:
284                                 heapq.heappush(todo, (neglen - 1, tlist.end,
285                                                       rank.with_token(t, chgpenalty)))
286                     elif tlist.end == trange.end:
287                         if tlist.ttype == TokenType.PARTIAL:
288                             ranks.append(dbf.RankedTokens(rank.penalty
289                                                           + max(t.penalty for t in tlist.tokens),
290                                                           rank.tokens))
291                         else:
292                             ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
293                         if len(ranks) >= 10:
294                             # Too many variants, bail out and only add
295                             # Worst-case Fallback: sum of penalty of partials
296                             name_partials = self.query.get_partials_list(trange)
297                             default = sum(t.penalty for t in name_partials) + 0.2
298                             ranks.append(dbf.RankedTokens(rank.penalty + default, []))
299                             # Bail out of outer loop
300                             todo.clear()
301                             break
302
303         ranks.sort(key=lambda r: len(r.tokens))
304         default = ranks[0].penalty + 0.3
305         del ranks[0]
306         ranks.sort(key=lambda r: r.penalty)
307
308         return dbf.FieldRanking('nameaddress_vector', default, ranks)
309
310
311     def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
312         """ Collect the tokens for the non-name search fields in the
313             assignment.
314         """
315         sdata = dbf.SearchData()
316         sdata.penalty = assignment.penalty
317         if assignment.country:
318             tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
319             if self.details.countries:
320                 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
321                 if not tokens:
322                     return None
323             sdata.set_strings('countries', tokens)
324         elif self.details.countries:
325             sdata.countries = dbf.WeightedStrings(self.details.countries,
326                                                   [0.0] * len(self.details.countries))
327         if assignment.housenumber:
328             sdata.set_strings('housenumbers',
329                               self.query.get_tokens(assignment.housenumber,
330                                                     TokenType.HOUSENUMBER))
331         if assignment.postcode:
332             sdata.set_strings('postcodes',
333                               self.query.get_tokens(assignment.postcode,
334                                                     TokenType.POSTCODE))
335         if assignment.qualifier:
336             tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
337             if self.details.categories:
338                 tokens = [t for t in tokens if t.get_category() in self.details.categories]
339                 if not tokens:
340                     return None
341             sdata.set_qualifiers(tokens)
342         elif self.details.categories:
343             sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
344                                                       [0.0] * len(self.details.categories))
345
346         if assignment.address:
347             sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
348         else:
349             sdata.rankings = []
350
351         return sdata
352
353
354     def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
355         """ Collect tokens for near items search or use the categories
356             requested per parameter.
357             Returns None if no category search is requested.
358         """
359         if assignment.near_item:
360             tokens: Dict[Tuple[str, str], float] = {}
361             for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
362                 cat = t.get_category()
363                 # The category of a near search will be that of near_item.
364                 # Thus, if search is restricted to a category parameter,
365                 # the two sets must intersect.
366                 if (not self.details.categories or cat in self.details.categories)\
367                    and t.penalty < tokens.get(cat, 1000.0):
368                     tokens[cat] = t.penalty
369             return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
370
371         return None
372
373
374 PENALTY_WORDCHANGE = {
375     BreakType.START: 0.0,
376     BreakType.END: 0.0,
377     BreakType.PHRASE: 0.0,
378     BreakType.WORD: 0.1,
379     BreakType.PART: 0.2,
380     BreakType.TOKEN: 0.4
381 }