1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
20 def wrap_near_search(categories: List[Tuple[str, str]],
21 search: dbs.AbstractSearch) -> dbs.NearSearch:
22 """ Create a new search that wraps the given search in a search
23 for near places of the given category.
25 return dbs.NearSearch(penalty=search.penalty,
26 categories=dbf.WeightedCategories(categories,
27 [0.0] * len(categories)),
31 def build_poi_search(category: List[Tuple[str, str]],
32 countries: Optional[List[str]]) -> dbs.PoiSearch:
33 """ Create a new search for places by the given category, possibly
34 constraint to the given countries.
37 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
39 ccs = dbf.WeightedStrings([], [])
41 class _PoiData(dbf.SearchData):
43 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
46 return dbs.PoiSearch(_PoiData())
50 """ Build the abstract search queries from token assignments.
53 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
55 self.details = details
59 def configured_for_country(self) -> bool:
60 """ Return true if the search details are configured to
61 allow countries in the result.
63 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
64 and self.details.layer_enabled(DataLayer.ADDRESS)
68 def configured_for_postcode(self) -> bool:
69 """ Return true if the search details are configured to
70 allow postcodes in the result.
72 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
73 and self.details.layer_enabled(DataLayer.ADDRESS)
77 def configured_for_housenumbers(self) -> bool:
78 """ Return true if the search details are configured to
79 allow addresses in the result.
81 return self.details.max_rank >= 30 \
82 and self.details.layer_enabled(DataLayer.ADDRESS)
85 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
86 """ Yield all possible abstract searches for the given token assignment.
88 sdata = self.get_search_data(assignment)
92 near_items = self.get_near_items(assignment)
93 if near_items is not None and not near_items:
94 return # impossible compbination of near items and category parameter
96 if assignment.name is None:
97 if near_items and not sdata.postcodes:
98 sdata.qualifiers = near_items
100 builder = self.build_poi_search(sdata)
101 elif assignment.housenumber:
102 hnr_tokens = self.query.get_tokens(assignment.housenumber,
103 TokenType.HOUSENUMBER)
104 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
106 builder = self.build_special_search(sdata, assignment.address,
109 builder = self.build_name_search(sdata, assignment.name, assignment.address,
113 penalty = min(near_items.penalties)
114 near_items.penalties = [p - penalty for p in near_items.penalties]
115 for search in builder:
116 search_penalty = search.penalty
118 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
121 for search in builder:
122 search.penalty += assignment.penalty
126 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
127 """ Build abstract search query for a simple category search.
128 This kind of search requires an additional geographic constraint.
130 if not sdata.housenumbers \
131 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
132 yield dbs.PoiSearch(sdata)
135 def build_special_search(self, sdata: dbf.SearchData,
136 address: List[TokenRange],
137 is_category: bool) -> Iterator[dbs.AbstractSearch]:
138 """ Build abstract search queries for searches that do not involve
142 # No special searches over qualifiers supported.
145 if sdata.countries and not address and not sdata.postcodes \
146 and self.configured_for_country:
147 yield dbs.CountrySearch(sdata)
149 if sdata.postcodes and (is_category or self.configured_for_postcode):
150 penalty = 0.0 if sdata.countries else 0.1
152 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
153 [t.token for r in address
154 for t in self.query.get_partials_list(r)],
157 yield dbs.PostcodeSearch(penalty, sdata)
160 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
161 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
162 """ Build a simple address search for special entries where the
163 housenumber is the main name token.
165 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
167 partials = [t for trange in address
168 for t in self.query.get_partials_list(trange)]
170 if len(partials) != 1 or partials[0].count < 10000:
171 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
172 [t.token for t in partials], 'lookup_all'))
174 sdata.lookups.append(
175 dbf.FieldLookup('nameaddress_vector',
177 in self.query.get_tokens(address[0], TokenType.WORD)],
180 sdata.housenumbers = dbf.WeightedStrings([], [])
181 yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
184 def build_name_search(self, sdata: dbf.SearchData,
185 name: TokenRange, address: List[TokenRange],
186 is_category: bool) -> Iterator[dbs.AbstractSearch]:
187 """ Build abstract search queries for simple name or address searches.
189 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
190 ranking = self.get_name_ranking(name)
191 name_penalty = ranking.normalize_penalty()
193 sdata.rankings.append(ranking)
194 for penalty, count, lookup in self.yield_lookups(name, address):
195 sdata.lookups = lookup
196 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
199 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
200 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
201 """ Yield all variants how the given name and address should best
202 be searched for. This takes into account how frequent the terms
203 are and tries to find a lookup that optimizes index use.
205 penalty = 0.0 # extra penalty
206 name_partials = self.query.get_partials_list(name)
207 name_tokens = [t.token for t in name_partials]
209 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
210 addr_tokens = [t.token for t in addr_partials]
212 partials_indexed = all(t.is_indexed for t in name_partials) \
213 and all(t.is_indexed for t in addr_partials)
214 exp_count = min(t.count for t in name_partials) / (2**(len(name_partials) - 1))
216 if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
217 yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
220 # Partial term to frequent. Try looking up by rare full names first.
221 name_fulls = self.query.get_tokens(name, TokenType.WORD)
222 fulls_count = sum(t.count for t in name_fulls)
223 # At this point drop unindexed partials from the address.
224 # This might yield wrong results, nothing we can do about that.
225 if not partials_indexed:
226 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
227 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
228 # Any of the full names applies with all of the partials from the address
229 yield penalty, fulls_count / (2**len(addr_partials)),\
230 dbf.lookup_by_any_name([t.token for t in name_fulls], addr_tokens,
231 'restrict' if fulls_count < 10000 else 'lookup_all')
233 # To catch remaining results, lookup by name and address
234 # We only do this if there is a reasonable number of results expected.
235 exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
236 if exp_count < 10000 and all(t.is_indexed for t in name_partials):
237 lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
239 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
240 penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
241 yield penalty, exp_count, lookup
244 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
245 """ Create a ranking expression for a name term in the given range.
247 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
248 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
249 ranks.sort(key=lambda r: r.penalty)
250 # Fallback, sum of penalty for partials
251 name_partials = self.query.get_partials_list(trange)
252 default = sum(t.penalty for t in name_partials) + 0.2
253 return dbf.FieldRanking('name_vector', default, ranks)
256 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
257 """ Create a list of ranking expressions for an address term
258 for the given ranges.
260 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
261 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
262 ranks: List[dbf.RankedTokens] = []
264 while todo: # pylint: disable=too-many-nested-blocks
265 neglen, pos, rank = heapq.heappop(todo)
266 for tlist in self.query.nodes[pos].starting:
267 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
268 if tlist.end < trange.end:
269 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
270 if tlist.ttype == TokenType.PARTIAL:
271 penalty = rank.penalty + chgpenalty \
272 + max(t.penalty for t in tlist.tokens)
273 heapq.heappush(todo, (neglen - 1, tlist.end,
274 dbf.RankedTokens(penalty, rank.tokens)))
276 for t in tlist.tokens:
277 heapq.heappush(todo, (neglen - 1, tlist.end,
278 rank.with_token(t, chgpenalty)))
279 elif tlist.end == trange.end:
280 if tlist.ttype == TokenType.PARTIAL:
281 ranks.append(dbf.RankedTokens(rank.penalty
282 + max(t.penalty for t in tlist.tokens),
285 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
287 # Too many variants, bail out and only add
288 # Worst-case Fallback: sum of penalty of partials
289 name_partials = self.query.get_partials_list(trange)
290 default = sum(t.penalty for t in name_partials) + 0.2
291 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
292 # Bail out of outer loop
296 ranks.sort(key=lambda r: len(r.tokens))
297 default = ranks[0].penalty + 0.3
299 ranks.sort(key=lambda r: r.penalty)
301 return dbf.FieldRanking('nameaddress_vector', default, ranks)
304 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
305 """ Collect the tokens for the non-name search fields in the
308 sdata = dbf.SearchData()
309 sdata.penalty = assignment.penalty
310 if assignment.country:
311 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
312 if self.details.countries:
313 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
316 sdata.set_strings('countries', tokens)
317 elif self.details.countries:
318 sdata.countries = dbf.WeightedStrings(self.details.countries,
319 [0.0] * len(self.details.countries))
320 if assignment.housenumber:
321 sdata.set_strings('housenumbers',
322 self.query.get_tokens(assignment.housenumber,
323 TokenType.HOUSENUMBER))
324 if assignment.postcode:
325 sdata.set_strings('postcodes',
326 self.query.get_tokens(assignment.postcode,
328 if assignment.qualifier:
329 tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
330 if self.details.categories:
331 tokens = [t for t in tokens if t.get_category() in self.details.categories]
334 sdata.set_qualifiers(tokens)
335 elif self.details.categories:
336 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
337 [0.0] * len(self.details.categories))
339 if assignment.address:
340 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
347 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
348 """ Collect tokens for near items search or use the categories
349 requested per parameter.
350 Returns None if no category search is requested.
352 if assignment.near_item:
353 tokens: Dict[Tuple[str, str], float] = {}
354 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
355 cat = t.get_category()
356 # The category of a near search will be that of near_item.
357 # Thus, if search is restricted to a category parameter,
358 # the two sets must intersect.
359 if (not self.details.categories or cat in self.details.categories)\
360 and t.penalty < tokens.get(cat, 1000.0):
361 tokens[cat] = t.penalty
362 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
367 PENALTY_WORDCHANGE = {
368 BreakType.START: 0.0,
370 BreakType.PHRASE: 0.0,