1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Conversion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 import nominatim.api.search.db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 near_items = self.get_near_items(assignment)
94 if near_items is not None and not near_items:
95 return # impossible compbination of near items and category parameter
97 if assignment.name is None:
98 if near_items and not sdata.postcodes:
99 sdata.qualifiers = near_items
101 builder = self.build_poi_search(sdata)
102 elif assignment.housenumber:
103 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104 TokenType.HOUSENUMBER)
105 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
107 builder = self.build_special_search(sdata, assignment.address,
110 builder = self.build_name_search(sdata, assignment.name, assignment.address,
114 penalty = min(near_items.penalties)
115 near_items.penalties = [p - penalty for p in near_items.penalties]
116 for search in builder:
117 search_penalty = search.penalty
119 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
122 for search in builder:
123 search.penalty += assignment.penalty
127 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128 """ Build abstract search query for a simple category search.
129 This kind of search requires an additional geographic constraint.
131 if not sdata.housenumbers \
132 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133 yield dbs.PoiSearch(sdata)
136 def build_special_search(self, sdata: dbf.SearchData,
137 address: List[TokenRange],
138 is_category: bool) -> Iterator[dbs.AbstractSearch]:
139 """ Build abstract search queries for searches that do not involve
143 # No special searches over qualifiers supported.
146 if sdata.countries and not address and not sdata.postcodes \
147 and self.configured_for_country:
148 yield dbs.CountrySearch(sdata)
150 if sdata.postcodes and (is_category or self.configured_for_postcode):
151 penalty = 0.0 if sdata.countries else 0.1
153 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154 [t.token for r in address
155 for t in self.query.get_partials_list(r)],
158 yield dbs.PostcodeSearch(penalty, sdata)
161 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163 """ Build a simple address search for special entries where the
164 housenumber is the main name token.
166 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167 expected_count = sum(t.count for t in hnrs)
169 partials = {t.token: t.count for trange in address
170 for t in self.query.get_partials_list(trange)}
172 if expected_count < 8000:
173 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174 list(partials), lookups.Restrict))
175 elif len(partials) != 1 or list(partials.values())[0] < 10000:
176 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177 list(partials), lookups.LookupAll))
179 addr_fulls = [t.token for t
180 in self.query.get_tokens(address[0], TokenType.WORD)]
181 if len(addr_fulls) > 5:
183 sdata.lookups.append(
184 dbf.FieldLookup('nameaddress_vector', addr_fulls, lookups.LookupAny))
186 sdata.housenumbers = dbf.WeightedStrings([], [])
187 yield dbs.PlaceSearch(0.05, sdata, expected_count)
190 def build_name_search(self, sdata: dbf.SearchData,
191 name: TokenRange, address: List[TokenRange],
192 is_category: bool) -> Iterator[dbs.AbstractSearch]:
193 """ Build abstract search queries for simple name or address searches.
195 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
196 ranking = self.get_name_ranking(name)
197 name_penalty = ranking.normalize_penalty()
199 sdata.rankings.append(ranking)
200 for penalty, count, lookup in self.yield_lookups(name, address):
201 sdata.lookups = lookup
202 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
205 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
206 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
207 """ Yield all variants how the given name and address should best
208 be searched for. This takes into account how frequent the terms
209 are and tries to find a lookup that optimizes index use.
211 penalty = 0.0 # extra penalty
212 name_partials = {t.token: t for t in self.query.get_partials_list(name)}
214 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
215 addr_tokens = list({t.token for t in addr_partials})
217 partials_indexed = all(t.is_indexed for t in name_partials.values()) \
218 and all(t.is_indexed for t in addr_partials)
219 exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
221 if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
222 yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
225 # Partial term to frequent. Try looking up by rare full names first.
226 name_fulls = self.query.get_tokens(name, TokenType.WORD)
228 fulls_count = sum(t.count for t in name_fulls)
229 if len(name_partials) == 1:
230 penalty += min(0.5, max(0, (exp_count - 50 * fulls_count) / (2000 * fulls_count)))
232 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
234 yield penalty,fulls_count / (2**len(addr_tokens)), \
235 self.get_full_name_ranking(name_fulls, addr_partials,
236 fulls_count > 30000 / max(1, len(addr_tokens)))
238 # To catch remaining results, lookup by name and address
239 # We only do this if there is a reasonable number of results expected.
240 exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
241 if exp_count < 10000 and all(t.is_indexed for t in name_partials.values()):
242 penalty += 0.35 * max(1 if name_fulls else 0.1,
243 5 - len(name_partials) - len(addr_tokens))
244 yield penalty, exp_count,\
245 self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
248 def get_name_address_ranking(self, name_tokens: List[int],
249 addr_partials: List[Token]) -> List[dbf.FieldLookup]:
250 """ Create a ranking expression looking up by name and address.
252 lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
254 addr_restrict_tokens = []
255 addr_lookup_tokens = []
256 for t in addr_partials:
258 if t.addr_count > 20000:
259 addr_restrict_tokens.append(t.token)
261 addr_lookup_tokens.append(t.token)
263 if addr_restrict_tokens:
264 lookup.append(dbf.FieldLookup('nameaddress_vector',
265 addr_restrict_tokens, lookups.Restrict))
266 if addr_lookup_tokens:
267 lookup.append(dbf.FieldLookup('nameaddress_vector',
268 addr_lookup_tokens, lookups.LookupAll))
273 def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
274 use_lookup: bool) -> List[dbf.FieldLookup]:
275 """ Create a ranking expression with full name terms and
276 additional address lookup. When 'use_lookup' is true, then
277 address lookups will use the index, when the occurences are not
280 # At this point drop unindexed partials from the address.
281 # This might yield wrong results, nothing we can do about that.
283 addr_restrict_tokens = []
284 addr_lookup_tokens = []
285 for t in addr_partials:
287 if t.addr_count > 20000:
288 addr_restrict_tokens.append(t.token)
290 addr_lookup_tokens.append(t.token)
292 addr_restrict_tokens = [t.token for t in addr_partials if t.is_indexed]
293 addr_lookup_tokens = []
295 return dbf.lookup_by_any_name([t.token for t in name_fulls],
296 addr_restrict_tokens, addr_lookup_tokens)
299 def get_name_ranking(self, trange: TokenRange,
300 db_field: str = 'name_vector') -> dbf.FieldRanking:
301 """ Create a ranking expression for a name term in the given range.
303 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
304 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
305 ranks.sort(key=lambda r: r.penalty)
306 # Fallback, sum of penalty for partials
307 name_partials = self.query.get_partials_list(trange)
308 default = sum(t.penalty for t in name_partials) + 0.2
309 return dbf.FieldRanking(db_field, default, ranks)
312 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
313 """ Create a list of ranking expressions for an address term
314 for the given ranges.
316 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
317 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
318 ranks: List[dbf.RankedTokens] = []
320 while todo: # pylint: disable=too-many-nested-blocks
321 neglen, pos, rank = heapq.heappop(todo)
322 for tlist in self.query.nodes[pos].starting:
323 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
324 if tlist.end < trange.end:
325 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
326 if tlist.ttype == TokenType.PARTIAL:
327 penalty = rank.penalty + chgpenalty \
328 + max(t.penalty for t in tlist.tokens)
329 heapq.heappush(todo, (neglen - 1, tlist.end,
330 dbf.RankedTokens(penalty, rank.tokens)))
332 for t in tlist.tokens:
333 heapq.heappush(todo, (neglen - 1, tlist.end,
334 rank.with_token(t, chgpenalty)))
335 elif tlist.end == trange.end:
336 if tlist.ttype == TokenType.PARTIAL:
337 ranks.append(dbf.RankedTokens(rank.penalty
338 + max(t.penalty for t in tlist.tokens),
341 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
343 # Too many variants, bail out and only add
344 # Worst-case Fallback: sum of penalty of partials
345 name_partials = self.query.get_partials_list(trange)
346 default = sum(t.penalty for t in name_partials) + 0.2
347 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
348 # Bail out of outer loop
352 ranks.sort(key=lambda r: len(r.tokens))
353 default = ranks[0].penalty + 0.3
355 ranks.sort(key=lambda r: r.penalty)
357 return dbf.FieldRanking('nameaddress_vector', default, ranks)
360 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
361 """ Collect the tokens for the non-name search fields in the
364 sdata = dbf.SearchData()
365 sdata.penalty = assignment.penalty
366 if assignment.country:
367 tokens = self.get_country_tokens(assignment.country)
370 sdata.set_strings('countries', tokens)
371 elif self.details.countries:
372 sdata.countries = dbf.WeightedStrings(self.details.countries,
373 [0.0] * len(self.details.countries))
374 if assignment.housenumber:
375 sdata.set_strings('housenumbers',
376 self.query.get_tokens(assignment.housenumber,
377 TokenType.HOUSENUMBER))
378 if assignment.postcode:
379 sdata.set_strings('postcodes',
380 self.query.get_tokens(assignment.postcode,
382 if assignment.qualifier:
383 tokens = self.get_qualifier_tokens(assignment.qualifier)
386 sdata.set_qualifiers(tokens)
387 elif self.details.categories:
388 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
389 [0.0] * len(self.details.categories))
391 if assignment.address:
392 if not assignment.name and assignment.housenumber:
393 # housenumber search: the first item needs to be handled like
394 # a name in ranking or penalties are not comparable with
396 sdata.set_ranking([self.get_name_ranking(assignment.address[0],
397 db_field='nameaddress_vector')]
398 + [self.get_addr_ranking(r) for r in assignment.address[1:]])
400 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
407 def get_country_tokens(self, trange: TokenRange) -> List[Token]:
408 """ Return the list of country tokens for the given range,
409 optionally filtered by the country list from the details
412 tokens = self.query.get_tokens(trange, TokenType.COUNTRY)
413 if self.details.countries:
414 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
419 def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
420 """ Return the list of qualifier tokens for the given range,
421 optionally filtered by the qualifier list from the details
424 tokens = self.query.get_tokens(trange, TokenType.QUALIFIER)
425 if self.details.categories:
426 tokens = [t for t in tokens if t.get_category() in self.details.categories]
431 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
432 """ Collect tokens for near items search or use the categories
433 requested per parameter.
434 Returns None if no category search is requested.
436 if assignment.near_item:
437 tokens: Dict[Tuple[str, str], float] = {}
438 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
439 cat = t.get_category()
440 # The category of a near search will be that of near_item.
441 # Thus, if search is restricted to a category parameter,
442 # the two sets must intersect.
443 if (not self.details.categories or cat in self.details.categories)\
444 and t.penalty < tokens.get(cat, 1000.0):
445 tokens[cat] = t.penalty
446 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
451 PENALTY_WORDCHANGE = {
452 BreakType.START: 0.0,
454 BreakType.PHRASE: 0.0,