]> git.openstreetmap.org Git - nominatim.git/blob - src/nominatim_api/search/db_search_builder.py
e29f0b931eb4f1b4758e9601d0d502d7bf4b531e
[nominatim.git] / src / nominatim_api / search / db_search_builder.py
1 # SPDX-License-Identifier: GPL-3.0-or-later
2 #
3 # This file is part of Nominatim. (https://nominatim.org)
4 #
5 # Copyright (C) 2024 by the Nominatim developer community.
6 # For a full list of authors see the git log.
7 """
8 Conversion from token assignment to an abstract DB search.
9 """
10 from typing import Optional, List, Tuple, Iterator, Dict
11 import heapq
12
13 from ..types import SearchDetails, DataLayer
14 from .query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from .token_assignment import TokenAssignment
16 from . import db_search_fields as dbf
17 from . import db_searches as dbs
18 from . import db_search_lookups as lookups
19
20
21 def wrap_near_search(categories: List[Tuple[str, str]],
22                      search: dbs.AbstractSearch) -> dbs.NearSearch:
23     """ Create a new search that wraps the given search in a search
24         for near places of the given category.
25     """
26     return dbs.NearSearch(penalty=search.penalty,
27                           categories=dbf.WeightedCategories(categories,
28                                                             [0.0] * len(categories)),
29                           search=search)
30
31
32 def build_poi_search(category: List[Tuple[str, str]],
33                      countries: Optional[List[str]]) -> dbs.PoiSearch:
34     """ Create a new search for places by the given category, possibly
35         constraint to the given countries.
36     """
37     if countries:
38         ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
39     else:
40         ccs = dbf.WeightedStrings([], [])
41
42     class _PoiData(dbf.SearchData):
43         penalty = 0.0
44         qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
45         countries=ccs
46
47     return dbs.PoiSearch(_PoiData())
48
49
50 class SearchBuilder:
51     """ Build the abstract search queries from token assignments.
52     """
53
54     def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
55         self.query = query
56         self.details = details
57
58
59     @property
60     def configured_for_country(self) -> bool:
61         """ Return true if the search details are configured to
62             allow countries in the result.
63         """
64         return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65                and self.details.layer_enabled(DataLayer.ADDRESS)
66
67
68     @property
69     def configured_for_postcode(self) -> bool:
70         """ Return true if the search details are configured to
71             allow postcodes in the result.
72         """
73         return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74                and self.details.layer_enabled(DataLayer.ADDRESS)
75
76
77     @property
78     def configured_for_housenumbers(self) -> bool:
79         """ Return true if the search details are configured to
80             allow addresses in the result.
81         """
82         return self.details.max_rank >= 30 \
83                and self.details.layer_enabled(DataLayer.ADDRESS)
84
85
86     def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87         """ Yield all possible abstract searches for the given token assignment.
88         """
89         sdata = self.get_search_data(assignment)
90         if sdata is None:
91             return
92
93         near_items = self.get_near_items(assignment)
94         if near_items is not None and not near_items:
95             return # impossible compbination of near items and category parameter
96
97         if assignment.name is None:
98             if near_items and not sdata.postcodes:
99                 sdata.qualifiers = near_items
100                 near_items = None
101                 builder = self.build_poi_search(sdata)
102             elif assignment.housenumber:
103                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104                                                    TokenType.HOUSENUMBER)
105                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
106             else:
107                 builder = self.build_special_search(sdata, assignment.address,
108                                                     bool(near_items))
109         else:
110             builder = self.build_name_search(sdata, assignment.name, assignment.address,
111                                              bool(near_items))
112
113         if near_items:
114             penalty = min(near_items.penalties)
115             near_items.penalties = [p - penalty for p in near_items.penalties]
116             for search in builder:
117                 search_penalty = search.penalty
118                 search.penalty = 0.0
119                 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
120                                      near_items, search)
121         else:
122             for search in builder:
123                 search.penalty += assignment.penalty
124                 yield search
125
126
127     def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128         """ Build abstract search query for a simple category search.
129             This kind of search requires an additional geographic constraint.
130         """
131         if not sdata.housenumbers \
132            and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133             yield dbs.PoiSearch(sdata)
134
135
136     def build_special_search(self, sdata: dbf.SearchData,
137                              address: List[TokenRange],
138                              is_category: bool) -> Iterator[dbs.AbstractSearch]:
139         """ Build abstract search queries for searches that do not involve
140             a named place.
141         """
142         if sdata.qualifiers:
143             # No special searches over qualifiers supported.
144             return
145
146         if sdata.countries and not address and not sdata.postcodes \
147            and self.configured_for_country:
148             yield dbs.CountrySearch(sdata)
149
150         if sdata.postcodes and (is_category or self.configured_for_postcode):
151             penalty = 0.0 if sdata.countries else 0.1
152             if address:
153                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154                                                  [t.token for r in address
155                                                   for t in self.query.get_partials_list(r)],
156                                                  lookups.Restrict)]
157                 penalty += 0.2
158             yield dbs.PostcodeSearch(penalty, sdata)
159
160
161     def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162                                  address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163         """ Build a simple address search for special entries where the
164             housenumber is the main name token.
165         """
166         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167         expected_count = sum(t.count for t in hnrs)
168
169         partials = {t.token: t.addr_count for trange in address
170                        for t in self.query.get_partials_list(trange)}
171
172         if expected_count < 8000:
173             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174                                                  list(partials), lookups.Restrict))
175         elif len(partials) != 1 or list(partials.values())[0] < 10000:
176             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177                                                  list(partials), lookups.LookupAll))
178         else:
179             addr_fulls = [t.token for t
180                           in self.query.get_tokens(address[0], TokenType.WORD)]
181             if len(addr_fulls) > 5:
182                 return
183             sdata.lookups.append(
184                 dbf.FieldLookup('nameaddress_vector', addr_fulls, lookups.LookupAny))
185
186         sdata.housenumbers = dbf.WeightedStrings([], [])
187         yield dbs.PlaceSearch(0.05, sdata, expected_count)
188
189
190     def build_name_search(self, sdata: dbf.SearchData,
191                           name: TokenRange, address: List[TokenRange],
192                           is_category: bool) -> Iterator[dbs.AbstractSearch]:
193         """ Build abstract search queries for simple name or address searches.
194         """
195         if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
196             ranking = self.get_name_ranking(name)
197             name_penalty = ranking.normalize_penalty()
198             if ranking.rankings:
199                 sdata.rankings.append(ranking)
200             for penalty, count, lookup in self.yield_lookups(name, address):
201                 sdata.lookups = lookup
202                 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
203
204
205     def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
206                           -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
207         """ Yield all variants how the given name and address should best
208             be searched for. This takes into account how frequent the terms
209             are and tries to find a lookup that optimizes index use.
210         """
211         penalty = 0.0 # extra penalty
212         name_partials = {t.token: t for t in self.query.get_partials_list(name)}
213
214         addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
215         addr_tokens = list({t.token for t in addr_partials})
216
217         partials_indexed = all(t.is_indexed for t in name_partials.values()) \
218                            and all(t.is_indexed for t in addr_partials)
219         exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
220
221         if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
222             yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
223             return
224
225         addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 30000
226         # Partial term to frequent. Try looking up by rare full names first.
227         name_fulls = self.query.get_tokens(name, TokenType.WORD)
228         if name_fulls:
229             fulls_count = sum(t.count for t in name_fulls)
230             if partials_indexed:
231                 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
232
233             if fulls_count < 50000 or addr_count < 30000:
234                 yield penalty,fulls_count / (2**len(addr_tokens)), \
235                     self.get_full_name_ranking(name_fulls, addr_partials,
236                                                fulls_count > 30000 / max(1, len(addr_tokens)))
237
238         # To catch remaining results, lookup by name and address
239         # We only do this if there is a reasonable number of results expected.
240         exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
241         if exp_count < 10000 and addr_count < 20000\
242            and all(t.is_indexed for t in name_partials.values()):
243             penalty += 0.35 * max(1 if name_fulls else 0.1,
244                                   5 - len(name_partials) - len(addr_tokens))
245             yield penalty, exp_count,\
246                   self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
247
248
249     def get_name_address_ranking(self, name_tokens: List[int],
250                                  addr_partials: List[Token]) -> List[dbf.FieldLookup]:
251         """ Create a ranking expression looking up by name and address.
252         """
253         lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
254
255         addr_restrict_tokens = []
256         addr_lookup_tokens = []
257         for t in addr_partials:
258             if t.is_indexed:
259                 if t.addr_count > 20000:
260                     addr_restrict_tokens.append(t.token)
261                 else:
262                     addr_lookup_tokens.append(t.token)
263
264         if addr_restrict_tokens:
265             lookup.append(dbf.FieldLookup('nameaddress_vector',
266                                           addr_restrict_tokens, lookups.Restrict))
267         if addr_lookup_tokens:
268             lookup.append(dbf.FieldLookup('nameaddress_vector',
269                                           addr_lookup_tokens, lookups.LookupAll))
270
271         return lookup
272
273
274     def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
275                               use_lookup: bool) -> List[dbf.FieldLookup]:
276         """ Create a ranking expression with full name terms and
277             additional address lookup. When 'use_lookup' is true, then
278             address lookups will use the index, when the occurrences are not
279             too many.
280         """
281         # At this point drop unindexed partials from the address.
282         # This might yield wrong results, nothing we can do about that.
283         if use_lookup:
284             addr_restrict_tokens = []
285             addr_lookup_tokens = []
286             for t in addr_partials:
287                 if t.is_indexed:
288                     if t.addr_count > 20000:
289                         addr_restrict_tokens.append(t.token)
290                     else:
291                         addr_lookup_tokens.append(t.token)
292         else:
293             addr_restrict_tokens = [t.token for t in addr_partials if t.is_indexed]
294             addr_lookup_tokens = []
295
296         return dbf.lookup_by_any_name([t.token for t in name_fulls],
297                                       addr_restrict_tokens, addr_lookup_tokens)
298
299
300     def get_name_ranking(self, trange: TokenRange,
301                          db_field: str = 'name_vector') -> dbf.FieldRanking:
302         """ Create a ranking expression for a name term in the given range.
303         """
304         name_fulls = self.query.get_tokens(trange, TokenType.WORD)
305         ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
306         ranks.sort(key=lambda r: r.penalty)
307         # Fallback, sum of penalty for partials
308         name_partials = self.query.get_partials_list(trange)
309         default = sum(t.penalty for t in name_partials) + 0.2
310         return dbf.FieldRanking(db_field, default, ranks)
311
312
313     def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
314         """ Create a list of ranking expressions for an address term
315             for the given ranges.
316         """
317         todo: List[Tuple[int, int, dbf.RankedTokens]] = []
318         heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
319         ranks: List[dbf.RankedTokens] = []
320
321         while todo: # pylint: disable=too-many-nested-blocks
322             neglen, pos, rank = heapq.heappop(todo)
323             for tlist in self.query.nodes[pos].starting:
324                 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
325                     if tlist.end < trange.end:
326                         chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
327                         if tlist.ttype == TokenType.PARTIAL:
328                             penalty = rank.penalty + chgpenalty \
329                                       + max(t.penalty for t in tlist.tokens)
330                             heapq.heappush(todo, (neglen - 1, tlist.end,
331                                                   dbf.RankedTokens(penalty, rank.tokens)))
332                         else:
333                             for t in tlist.tokens:
334                                 heapq.heappush(todo, (neglen - 1, tlist.end,
335                                                       rank.with_token(t, chgpenalty)))
336                     elif tlist.end == trange.end:
337                         if tlist.ttype == TokenType.PARTIAL:
338                             ranks.append(dbf.RankedTokens(rank.penalty
339                                                           + max(t.penalty for t in tlist.tokens),
340                                                           rank.tokens))
341                         else:
342                             ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
343                         if len(ranks) >= 10:
344                             # Too many variants, bail out and only add
345                             # Worst-case Fallback: sum of penalty of partials
346                             name_partials = self.query.get_partials_list(trange)
347                             default = sum(t.penalty for t in name_partials) + 0.2
348                             ranks.append(dbf.RankedTokens(rank.penalty + default, []))
349                             # Bail out of outer loop
350                             todo.clear()
351                             break
352
353         ranks.sort(key=lambda r: len(r.tokens))
354         default = ranks[0].penalty + 0.3
355         del ranks[0]
356         ranks.sort(key=lambda r: r.penalty)
357
358         return dbf.FieldRanking('nameaddress_vector', default, ranks)
359
360
361     def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
362         """ Collect the tokens for the non-name search fields in the
363             assignment.
364         """
365         sdata = dbf.SearchData()
366         sdata.penalty = assignment.penalty
367         if assignment.country:
368             tokens = self.get_country_tokens(assignment.country)
369             if not tokens:
370                 return None
371             sdata.set_strings('countries', tokens)
372         elif self.details.countries:
373             sdata.countries = dbf.WeightedStrings(self.details.countries,
374                                                   [0.0] * len(self.details.countries))
375         if assignment.housenumber:
376             sdata.set_strings('housenumbers',
377                               self.query.get_tokens(assignment.housenumber,
378                                                     TokenType.HOUSENUMBER))
379         if assignment.postcode:
380             sdata.set_strings('postcodes',
381                               self.query.get_tokens(assignment.postcode,
382                                                     TokenType.POSTCODE))
383         if assignment.qualifier:
384             tokens = self.get_qualifier_tokens(assignment.qualifier)
385             if not tokens:
386                 return None
387             sdata.set_qualifiers(tokens)
388         elif self.details.categories:
389             sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
390                                                       [0.0] * len(self.details.categories))
391
392         if assignment.address:
393             if not assignment.name and assignment.housenumber:
394                 # housenumber search: the first item needs to be handled like
395                 # a name in ranking or penalties are not comparable with
396                 # normal searches.
397                 sdata.set_ranking([self.get_name_ranking(assignment.address[0],
398                                                          db_field='nameaddress_vector')]
399                                   + [self.get_addr_ranking(r) for r in assignment.address[1:]])
400             else:
401                 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
402         else:
403             sdata.rankings = []
404
405         return sdata
406
407
408     def get_country_tokens(self, trange: TokenRange) -> List[Token]:
409         """ Return the list of country tokens for the given range,
410             optionally filtered by the country list from the details
411             parameters.
412         """
413         tokens = self.query.get_tokens(trange, TokenType.COUNTRY)
414         if self.details.countries:
415             tokens = [t for t in tokens if t.lookup_word in self.details.countries]
416
417         return tokens
418
419
420     def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
421         """ Return the list of qualifier tokens for the given range,
422             optionally filtered by the qualifier list from the details
423             parameters.
424         """
425         tokens = self.query.get_tokens(trange, TokenType.QUALIFIER)
426         if self.details.categories:
427             tokens = [t for t in tokens if t.get_category() in self.details.categories]
428
429         return tokens
430
431
432     def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
433         """ Collect tokens for near items search or use the categories
434             requested per parameter.
435             Returns None if no category search is requested.
436         """
437         if assignment.near_item:
438             tokens: Dict[Tuple[str, str], float] = {}
439             for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
440                 cat = t.get_category()
441                 # The category of a near search will be that of near_item.
442                 # Thus, if search is restricted to a category parameter,
443                 # the two sets must intersect.
444                 if (not self.details.categories or cat in self.details.categories)\
445                    and t.penalty < tokens.get(cat, 1000.0):
446                     tokens[cat] = t.penalty
447             return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
448
449         return None
450
451
452 PENALTY_WORDCHANGE = {
453     BreakType.START: 0.0,
454     BreakType.END: 0.0,
455     BreakType.PHRASE: 0.0,
456     BreakType.WORD: 0.1,
457     BreakType.PART: 0.2,
458     BreakType.TOKEN: 0.4
459 }