1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2024 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Conversion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from ..types import SearchDetails, DataLayer
14 from .query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from .token_assignment import TokenAssignment
16 from . import db_search_fields as dbf
17 from . import db_searches as dbs
18 from . import db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 near_items = self.get_near_items(assignment)
94 if near_items is not None and not near_items:
95 return # impossible compbination of near items and category parameter
97 if assignment.name is None:
98 if near_items and not sdata.postcodes:
99 sdata.qualifiers = near_items
101 builder = self.build_poi_search(sdata)
102 elif assignment.housenumber:
103 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104 TokenType.HOUSENUMBER)
105 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
107 builder = self.build_special_search(sdata, assignment.address,
110 builder = self.build_name_search(sdata, assignment.name, assignment.address,
114 penalty = min(near_items.penalties)
115 near_items.penalties = [p - penalty for p in near_items.penalties]
116 for search in builder:
117 search_penalty = search.penalty
119 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
122 for search in builder:
123 search.penalty += assignment.penalty
127 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128 """ Build abstract search query for a simple category search.
129 This kind of search requires an additional geographic constraint.
131 if not sdata.housenumbers \
132 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133 yield dbs.PoiSearch(sdata)
136 def build_special_search(self, sdata: dbf.SearchData,
137 address: List[TokenRange],
138 is_category: bool) -> Iterator[dbs.AbstractSearch]:
139 """ Build abstract search queries for searches that do not involve
143 # No special searches over qualifiers supported.
146 if sdata.countries and not address and not sdata.postcodes \
147 and self.configured_for_country:
148 yield dbs.CountrySearch(sdata)
150 if sdata.postcodes and (is_category or self.configured_for_postcode):
151 penalty = 0.0 if sdata.countries else 0.1
153 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154 [t.token for r in address
155 for t in self.query.get_partials_list(r)],
158 yield dbs.PostcodeSearch(penalty, sdata)
161 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163 """ Build a simple address search for special entries where the
164 housenumber is the main name token.
166 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167 expected_count = sum(t.count for t in hnrs)
169 partials = {t.token: t.addr_count for trange in address
170 for t in self.query.get_partials_list(trange)}
172 if expected_count < 8000:
173 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174 list(partials), lookups.Restrict))
175 elif len(partials) != 1 or list(partials.values())[0] < 10000:
176 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177 list(partials), lookups.LookupAll))
179 addr_fulls = [t.token for t
180 in self.query.get_tokens(address[0], TokenType.WORD)]
181 if len(addr_fulls) > 5:
183 sdata.lookups.append(
184 dbf.FieldLookup('nameaddress_vector', addr_fulls, lookups.LookupAny))
186 sdata.housenumbers = dbf.WeightedStrings([], [])
187 yield dbs.PlaceSearch(0.05, sdata, expected_count)
190 def build_name_search(self, sdata: dbf.SearchData,
191 name: TokenRange, address: List[TokenRange],
192 is_category: bool) -> Iterator[dbs.AbstractSearch]:
193 """ Build abstract search queries for simple name or address searches.
195 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
196 ranking = self.get_name_ranking(name)
197 name_penalty = ranking.normalize_penalty()
199 sdata.rankings.append(ranking)
200 for penalty, count, lookup in self.yield_lookups(name, address):
201 sdata.lookups = lookup
202 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
205 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
206 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
207 """ Yield all variants how the given name and address should best
208 be searched for. This takes into account how frequent the terms
209 are and tries to find a lookup that optimizes index use.
211 penalty = 0.0 # extra penalty
212 name_partials = {t.token: t for t in self.query.get_partials_list(name)}
214 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
215 addr_tokens = list({t.token for t in addr_partials})
217 partials_indexed = all(t.is_indexed for t in name_partials.values()) \
218 and all(t.is_indexed for t in addr_partials)
219 exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
221 if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
222 yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
225 addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 30000
226 # Partial term to frequent. Try looking up by rare full names first.
227 name_fulls = self.query.get_tokens(name, TokenType.WORD)
229 fulls_count = sum(t.count for t in name_fulls)
231 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
233 if fulls_count < 50000 or addr_count < 30000:
234 yield penalty,fulls_count / (2**len(addr_tokens)), \
235 self.get_full_name_ranking(name_fulls, addr_partials,
236 fulls_count > 30000 / max(1, len(addr_tokens)))
238 # To catch remaining results, lookup by name and address
239 # We only do this if there is a reasonable number of results expected.
240 exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
241 if exp_count < 10000 and addr_count < 20000\
242 and all(t.is_indexed for t in name_partials.values()):
243 penalty += 0.35 * max(1 if name_fulls else 0.1,
244 5 - len(name_partials) - len(addr_tokens))
245 yield penalty, exp_count,\
246 self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
249 def get_name_address_ranking(self, name_tokens: List[int],
250 addr_partials: List[Token]) -> List[dbf.FieldLookup]:
251 """ Create a ranking expression looking up by name and address.
253 lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
255 addr_restrict_tokens = []
256 addr_lookup_tokens = []
257 for t in addr_partials:
259 if t.addr_count > 20000:
260 addr_restrict_tokens.append(t.token)
262 addr_lookup_tokens.append(t.token)
264 if addr_restrict_tokens:
265 lookup.append(dbf.FieldLookup('nameaddress_vector',
266 addr_restrict_tokens, lookups.Restrict))
267 if addr_lookup_tokens:
268 lookup.append(dbf.FieldLookup('nameaddress_vector',
269 addr_lookup_tokens, lookups.LookupAll))
274 def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
275 use_lookup: bool) -> List[dbf.FieldLookup]:
276 """ Create a ranking expression with full name terms and
277 additional address lookup. When 'use_lookup' is true, then
278 address lookups will use the index, when the occurrences are not
281 # At this point drop unindexed partials from the address.
282 # This might yield wrong results, nothing we can do about that.
284 addr_restrict_tokens = []
285 addr_lookup_tokens = []
286 for t in addr_partials:
288 if t.addr_count > 20000:
289 addr_restrict_tokens.append(t.token)
291 addr_lookup_tokens.append(t.token)
293 addr_restrict_tokens = [t.token for t in addr_partials if t.is_indexed]
294 addr_lookup_tokens = []
296 return dbf.lookup_by_any_name([t.token for t in name_fulls],
297 addr_restrict_tokens, addr_lookup_tokens)
300 def get_name_ranking(self, trange: TokenRange,
301 db_field: str = 'name_vector') -> dbf.FieldRanking:
302 """ Create a ranking expression for a name term in the given range.
304 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
305 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
306 ranks.sort(key=lambda r: r.penalty)
307 # Fallback, sum of penalty for partials
308 name_partials = self.query.get_partials_list(trange)
309 default = sum(t.penalty for t in name_partials) + 0.2
310 return dbf.FieldRanking(db_field, default, ranks)
313 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
314 """ Create a list of ranking expressions for an address term
315 for the given ranges.
317 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
318 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
319 ranks: List[dbf.RankedTokens] = []
321 while todo: # pylint: disable=too-many-nested-blocks
322 neglen, pos, rank = heapq.heappop(todo)
323 for tlist in self.query.nodes[pos].starting:
324 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
325 if tlist.end < trange.end:
326 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
327 if tlist.ttype == TokenType.PARTIAL:
328 penalty = rank.penalty + chgpenalty \
329 + max(t.penalty for t in tlist.tokens)
330 heapq.heappush(todo, (neglen - 1, tlist.end,
331 dbf.RankedTokens(penalty, rank.tokens)))
333 for t in tlist.tokens:
334 heapq.heappush(todo, (neglen - 1, tlist.end,
335 rank.with_token(t, chgpenalty)))
336 elif tlist.end == trange.end:
337 if tlist.ttype == TokenType.PARTIAL:
338 ranks.append(dbf.RankedTokens(rank.penalty
339 + max(t.penalty for t in tlist.tokens),
342 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
344 # Too many variants, bail out and only add
345 # Worst-case Fallback: sum of penalty of partials
346 name_partials = self.query.get_partials_list(trange)
347 default = sum(t.penalty for t in name_partials) + 0.2
348 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
349 # Bail out of outer loop
353 ranks.sort(key=lambda r: len(r.tokens))
354 default = ranks[0].penalty + 0.3
356 ranks.sort(key=lambda r: r.penalty)
358 return dbf.FieldRanking('nameaddress_vector', default, ranks)
361 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
362 """ Collect the tokens for the non-name search fields in the
365 sdata = dbf.SearchData()
366 sdata.penalty = assignment.penalty
367 if assignment.country:
368 tokens = self.get_country_tokens(assignment.country)
371 sdata.set_strings('countries', tokens)
372 elif self.details.countries:
373 sdata.countries = dbf.WeightedStrings(self.details.countries,
374 [0.0] * len(self.details.countries))
375 if assignment.housenumber:
376 sdata.set_strings('housenumbers',
377 self.query.get_tokens(assignment.housenumber,
378 TokenType.HOUSENUMBER))
379 if assignment.postcode:
380 sdata.set_strings('postcodes',
381 self.query.get_tokens(assignment.postcode,
383 if assignment.qualifier:
384 tokens = self.get_qualifier_tokens(assignment.qualifier)
387 sdata.set_qualifiers(tokens)
388 elif self.details.categories:
389 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
390 [0.0] * len(self.details.categories))
392 if assignment.address:
393 if not assignment.name and assignment.housenumber:
394 # housenumber search: the first item needs to be handled like
395 # a name in ranking or penalties are not comparable with
397 sdata.set_ranking([self.get_name_ranking(assignment.address[0],
398 db_field='nameaddress_vector')]
399 + [self.get_addr_ranking(r) for r in assignment.address[1:]])
401 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
408 def get_country_tokens(self, trange: TokenRange) -> List[Token]:
409 """ Return the list of country tokens for the given range,
410 optionally filtered by the country list from the details
413 tokens = self.query.get_tokens(trange, TokenType.COUNTRY)
414 if self.details.countries:
415 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
420 def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
421 """ Return the list of qualifier tokens for the given range,
422 optionally filtered by the qualifier list from the details
425 tokens = self.query.get_tokens(trange, TokenType.QUALIFIER)
426 if self.details.categories:
427 tokens = [t for t in tokens if t.get_category() in self.details.categories]
432 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
433 """ Collect tokens for near items search or use the categories
434 requested per parameter.
435 Returns None if no category search is requested.
437 if assignment.near_item:
438 tokens: Dict[Tuple[str, str], float] = {}
439 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
440 cat = t.get_category()
441 # The category of a near search will be that of near_item.
442 # Thus, if search is restricted to a category parameter,
443 # the two sets must intersect.
444 if (not self.details.categories or cat in self.details.categories)\
445 and t.penalty < tokens.get(cat, 1000.0):
446 tokens[cat] = t.penalty
447 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
452 PENALTY_WORDCHANGE = {
453 BreakType.START: 0.0,
455 BreakType.PHRASE: 0.0,