1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 from nominatim.api.logging import log
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 categories = self.get_search_categories(assignment)
95 if assignment.name is None:
96 if categories and not sdata.postcodes:
97 sdata.qualifiers = categories
99 builder = self.build_poi_search(sdata)
100 elif assignment.housenumber:
101 hnr_tokens = self.query.get_tokens(assignment.housenumber,
102 TokenType.HOUSENUMBER)
103 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
105 builder = self.build_special_search(sdata, assignment.address,
108 builder = self.build_name_search(sdata, assignment.name, assignment.address,
112 penalty = min(categories.penalties)
113 categories.penalties = [p - penalty for p in categories.penalties]
114 for search in builder:
115 yield dbs.NearSearch(penalty, categories, search)
120 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
121 """ Build abstract search query for a simple category search.
122 This kind of search requires an additional geographic constraint.
124 if not sdata.housenumbers \
125 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
126 yield dbs.PoiSearch(sdata)
129 def build_special_search(self, sdata: dbf.SearchData,
130 address: List[TokenRange],
131 is_category: bool) -> Iterator[dbs.AbstractSearch]:
132 """ Build abstract search queries for searches that do not involve
136 # No special searches over qualifiers supported.
139 if sdata.countries and not address and not sdata.postcodes \
140 and self.configured_for_country:
141 yield dbs.CountrySearch(sdata)
143 if sdata.postcodes and (is_category or self.configured_for_postcode):
144 penalty = 0.0 if sdata.countries else 0.1
146 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
147 [t.token for r in address
148 for t in self.query.get_partials_list(r)],
151 yield dbs.PostcodeSearch(penalty, sdata)
154 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
155 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
156 """ Build a simple address search for special entries where the
157 housenumber is the main name token.
159 partial_tokens: List[int] = []
160 for trange in address:
161 partial_tokens.extend(t.token for t in self.query.get_partials_list(trange))
163 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any'),
164 dbf.FieldLookup('nameaddress_vector', partial_tokens, 'lookup_all')
166 sdata.housenumbers = dbf.WeightedStrings([], [])
167 yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
170 def build_name_search(self, sdata: dbf.SearchData,
171 name: TokenRange, address: List[TokenRange],
172 is_category: bool) -> Iterator[dbs.AbstractSearch]:
173 """ Build abstract search queries for simple name or address searches.
175 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
176 ranking = self.get_name_ranking(name)
177 name_penalty = ranking.normalize_penalty()
179 sdata.rankings.append(ranking)
180 for penalty, count, lookup in self.yield_lookups(name, address):
181 sdata.lookups = lookup
182 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
185 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
186 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
187 """ Yield all variants how the given name and address should best
188 be searched for. This takes into account how frequent the terms
189 are and tries to find a lookup that optimizes index use.
191 penalty = 0.0 # extra penalty currently unused
193 name_partials = self.query.get_partials_list(name)
194 exp_name_count = min(t.count for t in name_partials)
196 for trange in address:
197 addr_partials.extend(self.query.get_partials_list(trange))
198 addr_tokens = [t.token for t in addr_partials]
199 partials_indexed = all(t.is_indexed for t in name_partials) \
200 and all(t.is_indexed for t in addr_partials)
202 if (len(name_partials) > 3 or exp_name_count < 1000) and partials_indexed:
203 # Lookup by name partials, use address partials to restrict results.
204 lookup = [dbf.FieldLookup('name_vector',
205 [t.token for t in name_partials], 'lookup_all')]
207 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
208 yield penalty, exp_name_count, lookup
211 exp_addr_count = min(t.count for t in addr_partials) if addr_partials else exp_name_count
212 if exp_addr_count < 1000 and partials_indexed:
213 # Lookup by address partials and restrict results through name terms.
214 # Give this a small penalty because lookups in the address index are
216 yield penalty + exp_addr_count/5000, exp_addr_count,\
217 [dbf.FieldLookup('name_vector', [t.token for t in name_partials], 'restrict'),
218 dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all')]
221 # Partial term to frequent. Try looking up by rare full names first.
222 name_fulls = self.query.get_tokens(name, TokenType.WORD)
223 rare_names = list(filter(lambda t: t.count < 1000, name_fulls))
224 # At this point drop unindexed partials from the address.
225 # This might yield wrong results, nothing we can do about that.
226 if not partials_indexed:
227 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
228 log().var_dump('before', penalty)
229 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
230 log().var_dump('after', penalty)
232 # Any of the full names applies with all of the partials from the address
233 lookup = [dbf.FieldLookup('name_vector', [t.token for t in rare_names], 'lookup_any')]
235 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
236 yield penalty, sum(t.count for t in rare_names), lookup
238 # To catch remaining results, lookup by name and address
239 # We only do this if there is a reasonable number of results expected.
240 if min(exp_name_count, exp_addr_count) < 10000:
241 if all(t.is_indexed for t in name_partials):
242 lookup = [dbf.FieldLookup('name_vector',
243 [t.token for t in name_partials], 'lookup_all')]
245 # we don't have the partials, try with the non-rare names
246 non_rare_names = [t.token for t in name_fulls if t.count >= 1000]
247 if not non_rare_names:
249 lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
251 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
252 yield penalty + 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens)),\
253 min(exp_name_count, exp_addr_count), lookup
256 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
257 """ Create a ranking expression for a name term in the given range.
259 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
260 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
261 ranks.sort(key=lambda r: r.penalty)
262 # Fallback, sum of penalty for partials
263 name_partials = self.query.get_partials_list(trange)
264 default = sum(t.penalty for t in name_partials) + 0.2
265 return dbf.FieldRanking('name_vector', default, ranks)
268 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
269 """ Create a list of ranking expressions for an address term
270 for the given ranges.
272 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
273 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
274 ranks: List[dbf.RankedTokens] = []
276 while todo: # pylint: disable=too-many-nested-blocks
277 neglen, pos, rank = heapq.heappop(todo)
278 for tlist in self.query.nodes[pos].starting:
279 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
280 if tlist.end < trange.end:
281 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
282 if tlist.ttype == TokenType.PARTIAL:
283 penalty = rank.penalty + chgpenalty \
284 + max(t.penalty for t in tlist.tokens)
285 heapq.heappush(todo, (neglen - 1, tlist.end,
286 dbf.RankedTokens(penalty, rank.tokens)))
288 for t in tlist.tokens:
289 heapq.heappush(todo, (neglen - 1, tlist.end,
290 rank.with_token(t, chgpenalty)))
291 elif tlist.end == trange.end:
292 if tlist.ttype == TokenType.PARTIAL:
293 ranks.append(dbf.RankedTokens(rank.penalty
294 + max(t.penalty for t in tlist.tokens),
297 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
299 # Too many variants, bail out and only add
300 # Worst-case Fallback: sum of penalty of partials
301 name_partials = self.query.get_partials_list(trange)
302 default = sum(t.penalty for t in name_partials) + 0.2
303 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
304 # Bail out of outer loop
308 ranks.sort(key=lambda r: len(r.tokens))
309 default = ranks[0].penalty + 0.3
311 ranks.sort(key=lambda r: r.penalty)
313 return dbf.FieldRanking('nameaddress_vector', default, ranks)
316 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
317 """ Collect the tokens for the non-name search fields in the
320 sdata = dbf.SearchData()
321 sdata.penalty = assignment.penalty
322 if assignment.country:
323 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
324 if self.details.countries:
325 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
328 sdata.set_strings('countries', tokens)
329 elif self.details.countries:
330 sdata.countries = dbf.WeightedStrings(self.details.countries,
331 [0.0] * len(self.details.countries))
332 if assignment.housenumber:
333 sdata.set_strings('housenumbers',
334 self.query.get_tokens(assignment.housenumber,
335 TokenType.HOUSENUMBER))
336 if assignment.postcode:
337 sdata.set_strings('postcodes',
338 self.query.get_tokens(assignment.postcode,
340 if assignment.qualifier:
341 sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
342 TokenType.QUALIFIER))
344 if assignment.address:
345 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
352 def get_search_categories(self,
353 assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
354 """ Collect tokens for category search or use the categories
355 requested per parameter.
356 Returns None if no category search is requested.
358 if assignment.category:
359 tokens = [t for t in self.query.get_tokens(assignment.category,
361 if not self.details.categories
362 or t.get_category() in self.details.categories]
363 return dbf.WeightedCategories([t.get_category() for t in tokens],
364 [t.penalty for t in tokens])
366 if self.details.categories:
367 return dbf.WeightedCategories(self.details.categories,
368 [0.0] * len(self.details.categories))
373 PENALTY_WORDCHANGE = {
374 BreakType.START: 0.0,
376 BreakType.PHRASE: 0.0,