Tokenizer implementing normalisation as used before Nominatim 4 but using
libICU instead of the PostgreSQL module.
"""
-from collections import Counter
import itertools
import json
import logging
self.term_normalization = get_property(conn, DBCFG_TERM_NORMALIZATION)
- def finalize_import(self, _):
+ def finalize_import(self, config):
""" Do any required postprocessing to make the tokenizer data ready
for use.
"""
+ with connect(self.dsn) as conn:
+ sqlp = SQLPreprocessor(conn, config)
+ sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql')
def update_sql_functions(self, config):
return None
+ def update_statistics(self):
+ """ Recompute frequencies for all name words.
+ """
+ with connect(self.dsn) as conn:
+ if conn.table_exists('search_name'):
+ with conn.cursor() as cur:
+ cur.drop_table("word_frequencies")
+ LOG.info("Computing word frequencies")
+ cur.execute("""CREATE TEMP TABLE word_frequencies AS
+ SELECT unnest(name_vector) as id, count(*)
+ FROM search_name GROUP BY id""")
+ cur.execute("CREATE INDEX ON word_frequencies(id)")
+ LOG.info("Update word table with recomputed frequencies")
+ cur.execute("""UPDATE word
+ SET info = info || jsonb_build_object('count', count)
+ FROM word_frequencies WHERE word_id = id""")
+ cur.drop_table("word_frequencies")
+ conn.commit()
+
+
def name_analyzer(self):
""" Create a new analyzer for tokenizing names and queries
using this tokinzer. Analyzers are context managers and should
sqlp.run_sql_file(conn, 'tokenizer/icu_tokenizer_tables.sql')
conn.commit()
- LOG.warning("Precomputing word tokens")
-
- # get partial words and their frequencies
- words = self._count_partial_terms(conn)
-
- # copy them back into the word table
- with CopyBuffer() as copystr:
- for term, cnt in words.items():
- copystr.add('w', term, json.dumps({'count': cnt}))
-
- with conn.cursor() as cur:
- copystr.copy_out(cur, 'word',
- columns=['type', 'word_token', 'info'])
- cur.execute("""UPDATE word SET word_id = nextval('seq_word')
- WHERE word_id is null and type = 'w'""")
-
- conn.commit()
-
- def _count_partial_terms(self, conn):
- """ Count the partial terms from the names in the place table.
- """
- words = Counter()
- name_proc = self.loader.make_token_analysis()
-
- with conn.cursor(name="words") as cur:
- cur.execute(""" SELECT v, count(*) FROM
- (SELECT svals(name) as v FROM place)x
- WHERE length(v) < 75 GROUP BY v""")
-
- for name, cnt in cur:
- terms = set()
- for word in name_proc.get_variants_ascii(name_proc.get_normalized(name)):
- if ' ' in word:
- terms.update(word.split())
- for term in terms:
- words[term] += cnt
-
- return words
-
class LegacyICUNameAnalyzer(AbstractAnalyzer):
""" The legacy analyzer uses the ICU library for splitting names.
def _search_normalized(self, name):
""" Return the search token transliteration of the given name.
"""
- return self.token_analysis.get_search_normalized(name)
+ return self.token_analysis.search.transliterate(name).strip()
def _normalized(self, name):
""" Return the normalized version of the given name with all
non-relevant information removed.
"""
- return self.token_analysis.get_normalized(name)
+ return self.token_analysis.normalizer.transliterate(name).strip()
def get_word_token_info(self, words):
if addr_terms:
token_info.add_address_terms(addr_terms)
+
def _compute_partial_tokens(self, name):
""" Normalize the given term, split it into partial words and return
then token list for them.
partial_tokens = set()
for name in names:
+ analyzer_id = name.get_attr('analyzer')
norm_name = self._normalized(name.name)
- full, part = self._cache.names.get(norm_name, (None, None))
+ if analyzer_id is None:
+ token_id = norm_name
+ else:
+ token_id = f'{norm_name}@{analyzer_id}'
+
+ full, part = self._cache.names.get(token_id, (None, None))
if full is None:
- variants = self.token_analysis.get_variants_ascii(norm_name)
+ variants = self.token_analysis.analysis[analyzer_id].get_variants_ascii(norm_name)
if not variants:
continue
with self.conn.cursor() as cur:
cur.execute("SELECT (getorcreate_full_word(%s, %s)).*",
- (norm_name, variants))
+ (token_id, variants))
full, part = cur.fetchone()
- self._cache.names[norm_name] = (full, part)
+ self._cache.names[token_id] = (full, part)
full_tokens.add(full)
partial_tokens.update(part)