from nominatim.api.search.token_assignment import TokenAssignment
import nominatim.api.search.db_search_fields as dbf
import nominatim.api.search.db_searches as dbs
-from nominatim.api.logging import log
def wrap_near_search(categories: List[Tuple[str, str]],
""" Build a simple address search for special entries where the
housenumber is the main name token.
"""
- partial_tokens: List[int] = []
- for trange in address:
- partial_tokens.extend(t.token for t in self.query.get_partials_list(trange))
+ sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
+
+ partials = [t for trange in address
+ for t in self.query.get_partials_list(trange)]
+
+ if len(partials) != 1 or partials[0].count < 10000:
+ sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
+ [t.token for t in partials], 'lookup_all'))
+ else:
+ sdata.lookups.append(
+ dbf.FieldLookup('nameaddress_vector',
+ [t.token for t
+ in self.query.get_tokens(address[0], TokenType.WORD)],
+ 'lookup_any'))
- sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any'),
- dbf.FieldLookup('nameaddress_vector', partial_tokens, 'lookup_all')
- ]
sdata.housenumbers = dbf.WeightedStrings([], [])
yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
be searched for. This takes into account how frequent the terms
are and tries to find a lookup that optimizes index use.
"""
- penalty = 0.0 # extra penalty currently unused
-
+ penalty = 0.0 # extra penalty
name_partials = self.query.get_partials_list(name)
- exp_name_count = min(t.count for t in name_partials)
- addr_partials = []
- for trange in address:
- addr_partials.extend(self.query.get_partials_list(trange))
+ name_tokens = [t.token for t in name_partials]
+
+ addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
addr_tokens = [t.token for t in addr_partials]
+
partials_indexed = all(t.is_indexed for t in name_partials) \
and all(t.is_indexed for t in addr_partials)
+ exp_count = min(t.count for t in name_partials)
- if (len(name_partials) > 3 or exp_name_count < 1000) and partials_indexed:
- # Lookup by name partials, use address partials to restrict results.
- lookup = [dbf.FieldLookup('name_vector',
- [t.token for t in name_partials], 'lookup_all')]
- if addr_tokens:
- lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
- yield penalty, exp_name_count, lookup
+ if (len(name_partials) > 3 or exp_count < 1000) and partials_indexed:
+ yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
return
- exp_addr_count = min(t.count for t in addr_partials) if addr_partials else exp_name_count
- if exp_addr_count < 1000 and partials_indexed:
+ exp_count = min(exp_count, min(t.count for t in addr_partials)) \
+ if addr_partials else exp_count
+ if exp_count < 1000 and len(addr_tokens) > 3 and partials_indexed:
# Lookup by address partials and restrict results through name terms.
# Give this a small penalty because lookups in the address index are
# more expensive
- yield penalty + exp_addr_count/5000, exp_addr_count,\
- [dbf.FieldLookup('name_vector', [t.token for t in name_partials], 'restrict'),
- dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all')]
+ yield penalty + exp_count/5000, exp_count,\
+ dbf.lookup_by_addr(name_tokens, addr_tokens)
return
# Partial term to frequent. Try looking up by rare full names first.
penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
if rare_names:
# Any of the full names applies with all of the partials from the address
- lookup = [dbf.FieldLookup('name_vector', [t.token for t in rare_names], 'lookup_any')]
- if addr_tokens:
- lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
- yield penalty, sum(t.count for t in rare_names), lookup
+ yield penalty, sum(t.count for t in rare_names),\
+ dbf.lookup_by_any_name([t.token for t in rare_names], addr_tokens)
# To catch remaining results, lookup by name and address
# We only do this if there is a reasonable number of results expected.
- if min(exp_name_count, exp_addr_count) < 10000:
+ if exp_count < 10000:
if all(t.is_indexed for t in name_partials):
- lookup = [dbf.FieldLookup('name_vector',
- [t.token for t in name_partials], 'lookup_all')]
+ lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
else:
# we don't have the partials, try with the non-rare names
- non_rare_names = [t.token for t in name_fulls if t.count >= 1000]
+ non_rare_names = [t.token for t in name_fulls if t.count >= 10000]
if not non_rare_names:
return
lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
if addr_tokens:
lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
- yield penalty + 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens)),\
- min(exp_name_count, exp_addr_count), lookup
+ penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
+ if len(rare_names) == len(name_fulls):
+ # if there already was a search for all full tokens,
+ # avoid this if anything has been found
+ penalty += 0.25
+ yield penalty, exp_count, lookup
def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking: