]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/tokenizer/legacy_tokenizer.py
factor out housenumber splitting into sanitizer
[nominatim.git] / nominatim / tokenizer / legacy_tokenizer.py
index bd7b770921544b002c3a78a5fb5fcf078692c522..551b0536b88dbe77012a364015005a60cbe19548 100644 (file)
@@ -1,16 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2022 by the Nominatim developer community.
+# For a full list of authors see the git log.
 """
 Tokenizer implementing normalisation as used before Nominatim 4.
 """
 """
 Tokenizer implementing normalisation as used before Nominatim 4.
 """
+from collections import OrderedDict
 import logging
 import logging
+import re
 import shutil
 import shutil
+from textwrap import dedent
 
 
+from icu import Transliterator
 import psycopg2
 import psycopg2
+import psycopg2.extras
 
 from nominatim.db.connection import connect
 from nominatim.db import properties
 
 from nominatim.db.connection import connect
 from nominatim.db import properties
+from nominatim.db import utils as db_utils
+from nominatim.db.sql_preprocessor import SQLPreprocessor
 from nominatim.errors import UsageError
 from nominatim.errors import UsageError
+from nominatim.tokenizer.base import AbstractAnalyzer, AbstractTokenizer
 
 DBCFG_NORMALIZATION = "tokenizer_normalization"
 
 DBCFG_NORMALIZATION = "tokenizer_normalization"
+DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq"
 
 LOG = logging.getLogger()
 
 
 LOG = logging.getLogger()
 
@@ -20,7 +35,7 @@ def create(dsn, data_dir):
     return LegacyTokenizer(dsn, data_dir)
 
 
     return LegacyTokenizer(dsn, data_dir)
 
 
-def _install_module(src_dir, module_dir):
+def _install_module(config_module_path, src_dir, module_dir):
     """ Copies the PostgreSQL normalisation module into the project
         directory if necessary. For historical reasons the module is
         saved in the '/module' subdirectory and not with the other tokenizer
     """ Copies the PostgreSQL normalisation module into the project
         directory if necessary. For historical reasons the module is
         saved in the '/module' subdirectory and not with the other tokenizer
@@ -29,10 +44,17 @@ def _install_module(src_dir, module_dir):
         The function detects when the installation is run from the
         build directory. It doesn't touch the module in that case.
     """
         The function detects when the installation is run from the
         build directory. It doesn't touch the module in that case.
     """
+    # Custom module locations are simply used as is.
+    if config_module_path:
+        LOG.info("Using custom path for database module at '%s'", config_module_path)
+        return config_module_path
+
+    # Compatibility mode for builddir installations.
     if module_dir.exists() and src_dir.samefile(module_dir):
         LOG.info('Running from build directory. Leaving database module as is.')
     if module_dir.exists() and src_dir.samefile(module_dir):
         LOG.info('Running from build directory. Leaving database module as is.')
-        return
+        return module_dir
 
 
+    # In any other case install the module in the project directory.
     if not module_dir.exists():
         module_dir.mkdir()
 
     if not module_dir.exists():
         module_dir.mkdir()
 
@@ -42,8 +64,13 @@ def _install_module(src_dir, module_dir):
 
     LOG.info('Database module installed at %s', str(destfile))
 
 
     LOG.info('Database module installed at %s', str(destfile))
 
+    return module_dir
+
 
 def _check_module(module_dir, conn):
 
 def _check_module(module_dir, conn):
+    """ Try to use the PostgreSQL module to confirm that it is correctly
+        installed and accessible from PostgreSQL.
+    """
     with conn.cursor() as cur:
         try:
             cur.execute("""CREATE FUNCTION nominatim_test_import_func(text)
     with conn.cursor() as cur:
         try:
             cur.execute("""CREATE FUNCTION nominatim_test_import_func(text)
@@ -56,7 +83,7 @@ def _check_module(module_dir, conn):
             raise UsageError("Database module cannot be accessed.") from err
 
 
             raise UsageError("Database module cannot be accessed.") from err
 
 
-class LegacyTokenizer:
+class LegacyTokenizer(AbstractTokenizer):
     """ The legacy tokenizer uses a special PostgreSQL module to normalize
         names and queries. The tokenizer thus implements normalization through
         calls to the database.
     """ The legacy tokenizer uses a special PostgreSQL module to normalize
         names and queries. The tokenizer thus implements normalization through
         calls to the database.
@@ -68,34 +95,528 @@ class LegacyTokenizer:
         self.normalization = None
 
 
         self.normalization = None
 
 
-    def init_new_db(self, config):
+    def init_new_db(self, config, init_db=True):
         """ Set up a new tokenizer for the database.
 
             This copies all necessary data in the project directory to make
             sure the tokenizer remains stable even over updates.
         """
         """ Set up a new tokenizer for the database.
 
             This copies all necessary data in the project directory to make
             sure the tokenizer remains stable even over updates.
         """
-        # Find and optionally install the PsotgreSQL normalization module.
-        if config.DATABASE_MODULE_PATH:
-            LOG.info("Using custom path for database module at '%s'",
-                     config.DATABASE_MODULE_PATH)
-            module_dir = config.DATABASE_MODULE_PATH
-        else:
-            _install_module(config.lib_dir.module, config.project_dir / 'module')
-            module_dir = config.project_dir / 'module'
+        module_dir = _install_module(config.DATABASE_MODULE_PATH,
+                                     config.lib_dir.module,
+                                     config.project_dir / 'module')
 
         self.normalization = config.TERM_NORMALIZATION
 
 
         self.normalization = config.TERM_NORMALIZATION
 
+        self._install_php(config)
+
         with connect(self.dsn) as conn:
             _check_module(module_dir, conn)
         with connect(self.dsn) as conn:
             _check_module(module_dir, conn)
-
-            # Stable configuration is saved in the database.
-            properties.set_property(conn, DBCFG_NORMALIZATION, self.normalization)
-
+            self._save_config(conn, config)
             conn.commit()
 
             conn.commit()
 
+        if init_db:
+            self.update_sql_functions(config)
+            self._init_db_tables(config)
+
 
 
-    def init_from_project(self):
+    def init_from_project(self, _):
         """ Initialise the tokenizer from the project directory.
         """
         with connect(self.dsn) as conn:
             self.normalization = properties.get_property(conn, DBCFG_NORMALIZATION)
         """ Initialise the tokenizer from the project directory.
         """
         with connect(self.dsn) as conn:
             self.normalization = properties.get_property(conn, DBCFG_NORMALIZATION)
+
+
+    def finalize_import(self, config):
+        """ Do any required postprocessing to make the tokenizer data ready
+            for use.
+        """
+        with connect(self.dsn) as conn:
+            sqlp = SQLPreprocessor(conn, config)
+            sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql')
+
+
+    def update_sql_functions(self, config):
+        """ Reimport the SQL functions for this tokenizer.
+        """
+        with connect(self.dsn) as conn:
+            max_word_freq = properties.get_property(conn, DBCFG_MAXWORDFREQ)
+            modulepath = config.DATABASE_MODULE_PATH or \
+                         str((config.project_dir / 'module').resolve())
+            sqlp = SQLPreprocessor(conn, config)
+            sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer.sql',
+                              max_word_freq=max_word_freq,
+                              modulepath=modulepath)
+
+
+    def check_database(self, _):
+        """ Check that the tokenizer is set up correctly.
+        """
+        hint = """\
+             The Postgresql extension nominatim.so was not correctly loaded.
+
+             Error: {error}
+
+             Hints:
+             * Check the output of the CMmake/make installation step
+             * Does nominatim.so exist?
+             * Does nominatim.so exist on the database server?
+             * Can nominatim.so be accessed by the database user?
+             """
+        with connect(self.dsn) as conn:
+            with conn.cursor() as cur:
+                try:
+                    out = cur.scalar("SELECT make_standard_name('a')")
+                except psycopg2.Error as err:
+                    return hint.format(error=str(err))
+
+        if out != 'a':
+            return hint.format(error='Unexpected result for make_standard_name()')
+
+        return None
+
+
+    def migrate_database(self, config):
+        """ Initialise the project directory of an existing database for
+            use with this tokenizer.
+
+            This is a special migration function for updating existing databases
+            to new software versions.
+        """
+        self.normalization = config.TERM_NORMALIZATION
+        module_dir = _install_module(config.DATABASE_MODULE_PATH,
+                                     config.lib_dir.module,
+                                     config.project_dir / 'module')
+
+        with connect(self.dsn) as conn:
+            _check_module(module_dir, conn)
+            self._save_config(conn, config)
+
+
+    def update_statistics(self):
+        """ Recompute the frequency of full words.
+        """
+        with connect(self.dsn) as conn:
+            if conn.table_exists('search_name'):
+                with conn.cursor() as cur:
+                    cur.drop_table("word_frequencies")
+                    LOG.info("Computing word frequencies")
+                    cur.execute("""CREATE TEMP TABLE word_frequencies AS
+                                     SELECT unnest(name_vector) as id, count(*)
+                                     FROM search_name GROUP BY id""")
+                    cur.execute("CREATE INDEX ON word_frequencies(id)")
+                    LOG.info("Update word table with recomputed frequencies")
+                    cur.execute("""UPDATE word SET search_name_count = count
+                                   FROM word_frequencies
+                                   WHERE word_token like ' %' and word_id = id""")
+                    cur.drop_table("word_frequencies")
+            conn.commit()
+
+    def name_analyzer(self):
+        """ Create a new analyzer for tokenizing names and queries
+            using this tokinzer. Analyzers are context managers and should
+            be used accordingly:
+
+            ```
+            with tokenizer.name_analyzer() as analyzer:
+                analyser.tokenize()
+            ```
+
+            When used outside the with construct, the caller must ensure to
+            call the close() function before destructing the analyzer.
+
+            Analyzers are not thread-safe. You need to instantiate one per thread.
+        """
+        normalizer = Transliterator.createFromRules("phrase normalizer",
+                                                    self.normalization)
+        return LegacyNameAnalyzer(self.dsn, normalizer)
+
+
+    def _install_php(self, config):
+        """ Install the php script for the tokenizer.
+        """
+        php_file = self.data_dir / "tokenizer.php"
+        php_file.write_text(dedent("""\
+            <?php
+            @define('CONST_Max_Word_Frequency', {0.MAX_WORD_FREQUENCY});
+            @define('CONST_Term_Normalization_Rules', "{0.TERM_NORMALIZATION}");
+            require_once('{0.lib_dir.php}/tokenizer/legacy_tokenizer.php');
+            """.format(config)))
+
+
+    def _init_db_tables(self, config):
+        """ Set up the word table and fill it with pre-computed word
+            frequencies.
+        """
+        with connect(self.dsn) as conn:
+            sqlp = SQLPreprocessor(conn, config)
+            sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_tables.sql')
+            conn.commit()
+
+        LOG.warning("Precomputing word tokens")
+        db_utils.execute_file(self.dsn, config.lib_dir.data / 'words.sql')
+
+
+    def _save_config(self, conn, config):
+        """ Save the configuration that needs to remain stable for the given
+            database as database properties.
+        """
+        properties.set_property(conn, DBCFG_NORMALIZATION, self.normalization)
+        properties.set_property(conn, DBCFG_MAXWORDFREQ, config.MAX_WORD_FREQUENCY)
+
+
+class LegacyNameAnalyzer(AbstractAnalyzer):
+    """ The legacy analyzer uses the special Postgresql module for
+        splitting names.
+
+        Each instance opens a connection to the database to request the
+        normalization.
+    """
+
+    def __init__(self, dsn, normalizer):
+        self.conn = connect(dsn).connection
+        self.conn.autocommit = True
+        self.normalizer = normalizer
+        psycopg2.extras.register_hstore(self.conn)
+
+        self._cache = _TokenCache(self.conn)
+
+
+    def close(self):
+        """ Free all resources used by the analyzer.
+        """
+        if self.conn:
+            self.conn.close()
+            self.conn = None
+
+
+    def get_word_token_info(self, words):
+        """ Return token information for the given list of words.
+            If a word starts with # it is assumed to be a full name
+            otherwise is a partial name.
+
+            The function returns a list of tuples with
+            (original word, word token, word id).
+
+            The function is used for testing and debugging only
+            and not necessarily efficient.
+        """
+        with self.conn.cursor() as cur:
+            cur.execute("""SELECT t.term, word_token, word_id
+                           FROM word, (SELECT unnest(%s::TEXT[]) as term) t
+                           WHERE word_token = (CASE
+                                   WHEN left(t.term, 1) = '#' THEN
+                                     ' ' || make_standard_name(substring(t.term from 2))
+                                   ELSE
+                                     make_standard_name(t.term)
+                                   END)
+                                 and class is null and country_code is null""",
+                        (words, ))
+
+            return [(r[0], r[1], r[2]) for r in cur]
+
+
+    def normalize(self, phrase):
+        """ Normalize the given phrase, i.e. remove all properties that
+            are irrelevant for search.
+        """
+        return self.normalizer.transliterate(phrase)
+
+
+    @staticmethod
+    def normalize_postcode(postcode):
+        """ Convert the postcode to a standardized form.
+
+            This function must yield exactly the same result as the SQL function
+            'token_normalized_postcode()'.
+        """
+        return postcode.strip().upper()
+
+
+    def update_postcodes_from_db(self):
+        """ Update postcode tokens in the word table from the location_postcode
+            table.
+        """
+        with self.conn.cursor() as cur:
+            # This finds us the rows in location_postcode and word that are
+            # missing in the other table.
+            cur.execute("""SELECT * FROM
+                            (SELECT pc, word FROM
+                              (SELECT distinct(postcode) as pc FROM location_postcode) p
+                              FULL JOIN
+                              (SELECT word FROM word
+                                WHERE class ='place' and type = 'postcode') w
+                              ON pc = word) x
+                           WHERE pc is null or word is null""")
+
+            to_delete = []
+            to_add = []
+
+            for postcode, word in cur:
+                if postcode is None:
+                    to_delete.append(word)
+                else:
+                    to_add.append(postcode)
+
+            if to_delete:
+                cur.execute("""DELETE FROM WORD
+                               WHERE class ='place' and type = 'postcode'
+                                     and word = any(%s)
+                            """, (to_delete, ))
+            if to_add:
+                cur.execute("""SELECT count(create_postcode_id(pc))
+                               FROM unnest(%s) as pc
+                            """, (to_add, ))
+
+
+
+    def update_special_phrases(self, phrases, should_replace):
+        """ Replace the search index for special phrases with the new phrases.
+        """
+        norm_phrases = set(((self.normalize(p[0]), p[1], p[2], p[3])
+                            for p in phrases))
+
+        with self.conn.cursor() as cur:
+            # Get the old phrases.
+            existing_phrases = set()
+            cur.execute("""SELECT word, class, type, operator FROM word
+                           WHERE class != 'place'
+                                 OR (type != 'house' AND type != 'postcode')""")
+            for label, cls, typ, oper in cur:
+                existing_phrases.add((label, cls, typ, oper or '-'))
+
+            to_add = norm_phrases - existing_phrases
+            to_delete = existing_phrases - norm_phrases
+
+            if to_add:
+                cur.execute_values(
+                    """ INSERT INTO word (word_id, word_token, word, class, type,
+                                          search_name_count, operator)
+                        (SELECT nextval('seq_word'), ' ' || make_standard_name(name), name,
+                                class, type, 0,
+                                CASE WHEN op in ('in', 'near') THEN op ELSE null END
+                           FROM (VALUES %s) as v(name, class, type, op))""",
+                    to_add)
+
+            if to_delete and should_replace:
+                cur.execute_values(
+                    """ DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op)
+                        WHERE word = name and class = in_class and type = in_type
+                              and ((op = '-' and operator is null) or op = operator)""",
+                    to_delete)
+
+        LOG.info("Total phrases: %s. Added: %s. Deleted: %s",
+                 len(norm_phrases), len(to_add), len(to_delete))
+
+
+    def add_country_names(self, country_code, names):
+        """ Add names for the given country to the search index.
+        """
+        with self.conn.cursor() as cur:
+            cur.execute(
+                """INSERT INTO word (word_id, word_token, country_code)
+                   (SELECT nextval('seq_word'), lookup_token, %s
+                      FROM (SELECT DISTINCT ' ' || make_standard_name(n) as lookup_token
+                            FROM unnest(%s)n) y
+                      WHERE NOT EXISTS(SELECT * FROM word
+                                       WHERE word_token = lookup_token and country_code = %s))
+                """, (country_code, list(names.values()), country_code))
+
+
+    def process_place(self, place):
+        """ Determine tokenizer information about the given place.
+
+            Returns a JSON-serialisable structure that will be handed into
+            the database via the token_info field.
+        """
+        token_info = _TokenInfo(self._cache)
+
+        names = place.name
+
+        if names:
+            token_info.add_names(self.conn, names)
+
+            if place.is_country():
+                self.add_country_names(place.country_code, names)
+
+        address = place.address
+        if address:
+            self._process_place_address(token_info, address)
+
+        return token_info.data
+
+
+    def _process_place_address(self, token_info, address):
+        hnrs = []
+        addr_terms = []
+
+        for key, value in address.items():
+            if key == 'postcode':
+                # Make sure the normalized postcode is present in the word table.
+                if re.search(r'[:,;]', value) is None:
+                    self._cache.add_postcode(self.conn,
+                                             self.normalize_postcode(value))
+            elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'):
+                hnrs.append(value)
+            elif key == 'street':
+                token_info.add_street(self.conn, value)
+            elif key == 'place':
+                token_info.add_place(self.conn, value)
+            elif not key.startswith('_') and key not in ('country', 'full'):
+                addr_terms.append((key, value))
+
+        if hnrs:
+            token_info.add_housenumbers(self.conn, hnrs)
+
+        if addr_terms:
+            token_info.add_address_terms(self.conn, addr_terms)
+
+
+
+class _TokenInfo:
+    """ Collect token information to be sent back to the database.
+    """
+    def __init__(self, cache):
+        self.cache = cache
+        self.data = {}
+
+
+    def add_names(self, conn, names):
+        """ Add token information for the names of the place.
+        """
+        with conn.cursor() as cur:
+            # Create the token IDs for all names.
+            self.data['names'] = cur.scalar("SELECT make_keywords(%s)::text",
+                                            (names, ))
+
+
+    def add_housenumbers(self, conn, hnrs):
+        """ Extract housenumber information from the address.
+        """
+        if len(hnrs) == 1:
+            token = self.cache.get_housenumber(hnrs[0])
+            if token is not None:
+                self.data['hnr_tokens'] = token
+                self.data['hnr'] = hnrs[0]
+                return
+
+        # split numbers if necessary
+        simple_list = []
+        for hnr in hnrs:
+            simple_list.extend((x.strip() for x in re.split(r'[;,]', hnr)))
+
+        if len(simple_list) > 1:
+            simple_list = list(set(simple_list))
+
+        with conn.cursor() as cur:
+            cur.execute("SELECT (create_housenumbers(%s)).* ", (simple_list, ))
+            self.data['hnr_tokens'], self.data['hnr'] = cur.fetchone()
+
+
+    def add_street(self, conn, street):
+        """ Add addr:street match terms.
+        """
+        def _get_street(name):
+            with conn.cursor() as cur:
+                return cur.scalar("SELECT word_ids_from_name(%s)::text", (name, ))
+
+        tokens = self.cache.streets.get(street, _get_street)
+        if tokens:
+            self.data['street'] = tokens
+
+
+    def add_place(self, conn, place):
+        """ Add addr:place search and match terms.
+        """
+        def _get_place(name):
+            with conn.cursor() as cur:
+                cur.execute("""SELECT make_keywords(hstore('name' , %s))::text,
+                                      word_ids_from_name(%s)::text""",
+                            (name, name))
+                return cur.fetchone()
+
+        self.data['place_search'], self.data['place_match'] = \
+            self.cache.places.get(place, _get_place)
+
+
+    def add_address_terms(self, conn, terms):
+        """ Add additional address terms.
+        """
+        def _get_address_term(name):
+            with conn.cursor() as cur:
+                cur.execute("""SELECT addr_ids_from_name(%s)::text,
+                                      word_ids_from_name(%s)::text""",
+                            (name, name))
+                return cur.fetchone()
+
+        tokens = {}
+        for key, value in terms:
+            items = self.cache.address_terms.get(value, _get_address_term)
+            if items[0] or items[1]:
+                tokens[key] = items
+
+        if tokens:
+            self.data['addr'] = tokens
+
+
+class _LRU:
+    """ Least recently used cache that accepts a generator function to
+        produce the item when there is a cache miss.
+    """
+
+    def __init__(self, maxsize=128, init_data=None):
+        self.data = init_data or OrderedDict()
+        self.maxsize = maxsize
+        if init_data is not None and len(init_data) > maxsize:
+            self.maxsize = len(init_data)
+
+    def get(self, key, generator):
+        """ Get the item with the given key from the cache. If nothing
+            is found in the cache, generate the value through the
+            generator function and store it in the cache.
+        """
+        value = self.data.get(key)
+        if value is not None:
+            self.data.move_to_end(key)
+        else:
+            value = generator(key)
+            if len(self.data) >= self.maxsize:
+                self.data.popitem(last=False)
+            self.data[key] = value
+
+        return value
+
+
+class _TokenCache:
+    """ Cache for token information to avoid repeated database queries.
+
+        This cache is not thread-safe and needs to be instantiated per
+        analyzer.
+    """
+    def __init__(self, conn):
+        # various LRU caches
+        self.streets = _LRU(maxsize=256)
+        self.places = _LRU(maxsize=128)
+        self.address_terms = _LRU(maxsize=1024)
+
+        # Lookup houseunumbers up to 100 and cache them
+        with conn.cursor() as cur:
+            cur.execute("""SELECT i, ARRAY[getorcreate_housenumber_id(i::text)]::text
+                           FROM generate_series(1, 100) as i""")
+            self._cached_housenumbers = {str(r[0]): r[1] for r in cur}
+
+        # For postcodes remember the ones that have already been added
+        self.postcodes = set()
+
+    def get_housenumber(self, number):
+        """ Get a housenumber token from the cache.
+        """
+        return self._cached_housenumbers.get(number)
+
+
+    def add_postcode(self, conn, postcode):
+        """ Make sure the given postcode is in the database.
+        """
+        if postcode not in self.postcodes:
+            with conn.cursor() as cur:
+                cur.execute('SELECT create_postcode_id(%s)', (postcode, ))
+            self.postcodes.add(postcode)