]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/db_search_builder.py
remove restriction on frequent one word names
[nominatim.git] / nominatim / api / search / db_search_builder.py
index f2b653f2c2def3c3657abdc9159c3be66d215d5f..c2f98c4775621719faa359f72b8c36137613edee 100644 (file)
@@ -5,7 +5,7 @@
 # Copyright (C) 2023 by the Nominatim developer community.
 # For a full list of authors see the git log.
 """
 # Copyright (C) 2023 by the Nominatim developer community.
 # For a full list of authors see the git log.
 """
-Convertion from token assignment to an abstract DB search.
+Conversion from token assignment to an abstract DB search.
 """
 from typing import Optional, List, Tuple, Iterator, Dict
 import heapq
 """
 from typing import Optional, List, Tuple, Iterator, Dict
 import heapq
@@ -166,7 +166,7 @@ class SearchBuilder:
         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
         expected_count = sum(t.count for t in hnrs)
 
         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
         expected_count = sum(t.count for t in hnrs)
 
-        partials = {t.token: t.count for trange in address
+        partials = {t.token: t.addr_count for trange in address
                        for t in self.query.get_partials_list(trange)}
 
         if expected_count < 8000:
                        for t in self.query.get_partials_list(trange)}
 
         if expected_count < 8000:
@@ -222,31 +222,79 @@ class SearchBuilder:
             yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
             return
 
             yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
             return
 
+        addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 30000
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
         if name_fulls:
             fulls_count = sum(t.count for t in name_fulls)
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
         if name_fulls:
             fulls_count = sum(t.count for t in name_fulls)
-            # At this point drop unindexed partials from the address.
-            # This might yield wrong results, nothing we can do about that.
-            if not partials_indexed:
-                addr_tokens = [t.token for t in addr_partials if t.is_indexed]
+            if partials_indexed:
                 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
                 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
-            # Any of the full names applies with all of the partials from the address
-            yield penalty, fulls_count / (2**len(addr_tokens)),\
-                  dbf.lookup_by_any_name([t.token for t in name_fulls],
-                                         addr_tokens,
-                                         fulls_count > 30000 / max(1, len(addr_tokens)))
+
+            if fulls_count < 50000 or addr_count < 30000:
+                yield penalty,fulls_count / (2**len(addr_tokens)), \
+                    self.get_full_name_ranking(name_fulls, addr_partials,
+                                               fulls_count > 30000 / max(1, len(addr_tokens)))
 
         # To catch remaining results, lookup by name and address
         # We only do this if there is a reasonable number of results expected.
         exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
 
         # To catch remaining results, lookup by name and address
         # We only do this if there is a reasonable number of results expected.
         exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
-        if exp_count < 10000 and all(t.is_indexed for t in name_partials.values()):
-            lookup = [dbf.FieldLookup('name_vector', list(name_partials.keys()), lookups.LookupAll)]
-            if addr_tokens:
-                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
+        if exp_count < 10000 and addr_count < 20000\
+           and all(t.is_indexed for t in name_partials.values()):
             penalty += 0.35 * max(1 if name_fulls else 0.1,
                                   5 - len(name_partials) - len(addr_tokens))
             penalty += 0.35 * max(1 if name_fulls else 0.1,
                                   5 - len(name_partials) - len(addr_tokens))
-            yield penalty, exp_count, lookup
+            yield penalty, exp_count,\
+                  self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
+
+
+    def get_name_address_ranking(self, name_tokens: List[int],
+                                 addr_partials: List[Token]) -> List[dbf.FieldLookup]:
+        """ Create a ranking expression looking up by name and address.
+        """
+        lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
+
+        addr_restrict_tokens = []
+        addr_lookup_tokens = []
+        for t in addr_partials:
+            if t.is_indexed:
+                if t.addr_count > 20000:
+                    addr_restrict_tokens.append(t.token)
+                else:
+                    addr_lookup_tokens.append(t.token)
+
+        if addr_restrict_tokens:
+            lookup.append(dbf.FieldLookup('nameaddress_vector',
+                                          addr_restrict_tokens, lookups.Restrict))
+        if addr_lookup_tokens:
+            lookup.append(dbf.FieldLookup('nameaddress_vector',
+                                          addr_lookup_tokens, lookups.LookupAll))
+
+        return lookup
+
+
+    def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
+                              use_lookup: bool) -> List[dbf.FieldLookup]:
+        """ Create a ranking expression with full name terms and
+            additional address lookup. When 'use_lookup' is true, then
+            address lookups will use the index, when the occurences are not
+            too many.
+        """
+        # At this point drop unindexed partials from the address.
+        # This might yield wrong results, nothing we can do about that.
+        if use_lookup:
+            addr_restrict_tokens = []
+            addr_lookup_tokens = []
+            for t in addr_partials:
+                if t.is_indexed:
+                    if t.addr_count > 20000:
+                        addr_restrict_tokens.append(t.token)
+                    else:
+                        addr_lookup_tokens.append(t.token)
+        else:
+            addr_restrict_tokens = [t.token for t in addr_partials if t.is_indexed]
+            addr_lookup_tokens = []
+
+        return dbf.lookup_by_any_name([t.token for t in name_fulls],
+                                      addr_restrict_tokens, addr_lookup_tokens)
 
 
     def get_name_ranking(self, trange: TokenRange,
 
 
     def get_name_ranking(self, trange: TokenRange,