"""
Implementation of reverse geocoding.
"""
-from typing import Optional
+from typing import Optional, List, Callable, Type, Tuple
import sqlalchemy as sa
from geoalchemy2 import WKTElement
-from geoalchemy2.types import Geometry
-from nominatim.typing import SaColumn, SaSelect, SaTable, SaLabel, SaClause
+from nominatim.typing import SaColumn, SaSelect, SaFromClause, SaLabel, SaRow
from nominatim.api.connection import SearchConnection
import nominatim.api.results as nres
from nominatim.api.logging import log
-from nominatim.api.types import AnyPoint, DataLayer, LookupDetails, GeometryFormat
+from nominatim.api.types import AnyPoint, DataLayer, LookupDetails, GeometryFormat, Bbox
-def _select_from_placex(t: SaTable, wkt: Optional[str] = None) -> SaSelect:
+# In SQLAlchemy expression which compare with NULL need to be expressed with
+# the equal sign.
+# pylint: disable=singleton-comparison
+
+RowFunc = Callable[[Optional[SaRow], Type[nres.ReverseResult]], Optional[nres.ReverseResult]]
+
+def _select_from_placex(t: SaFromClause, wkt: Optional[str] = None) -> SaSelect:
""" Create a select statement with the columns relevant for reverse
results.
"""
if wkt is None:
distance = t.c.distance
+ centroid = t.c.centroid
else:
distance = t.c.geometry.ST_Distance(wkt)
+ centroid = sa.case(
+ (t.c.geometry.ST_GeometryType().in_(('ST_LineString',
+ 'ST_MultiLineString')),
+ t.c.geometry.ST_ClosestPoint(wkt)),
+ else_=t.c.centroid).label('centroid')
+
return sa.select(t.c.place_id, t.c.osm_type, t.c.osm_id, t.c.name,
t.c.class_, t.c.type,
t.c.housenumber, t.c.postcode, t.c.country_code,
t.c.importance, t.c.wikipedia,
t.c.parent_place_id, t.c.rank_address, t.c.rank_search,
- t.c.centroid,
+ centroid,
distance.label('distance'),
t.c.geometry.ST_Expand(0).label('bbox'))
-def _interpolated_housenumber(table: SaTable) -> SaLabel:
- # Entries with startnumber = endnumber are legacy from version < 4.1
+def _interpolated_housenumber(table: SaFromClause) -> SaLabel:
return sa.cast(table.c.startnumber
+ sa.func.round(((table.c.endnumber - table.c.startnumber) * table.c.position)
/ table.c.step) * table.c.step,
sa.Integer).label('housenumber')
-def _is_address_point(table: SaTable) -> SaClause:
+def _interpolated_position(table: SaFromClause) -> SaLabel:
+ fac = sa.cast(table.c.step, sa.Float) / (table.c.endnumber - table.c.startnumber)
+ rounded_pos = sa.func.round(table.c.position / fac) * fac
+ return sa.case(
+ (table.c.endnumber == table.c.startnumber, table.c.linegeo.ST_Centroid()),
+ else_=table.c.linegeo.ST_LineInterpolatePoint(rounded_pos)).label('centroid')
+
+
+def _locate_interpolation(table: SaFromClause, wkt: WKTElement) -> SaLabel:
+ """ Given a position, locate the closest point on the line.
+ """
+ return sa.case((table.c.linegeo.ST_GeometryType() == 'ST_LineString',
+ sa.func.ST_LineLocatePoint(table.c.linegeo, wkt)),
+ else_=0).label('position')
+
+
+def _is_address_point(table: SaFromClause) -> SaColumn:
return sa.and_(table.c.rank_address == 30,
sa.or_(table.c.housenumber != None,
table.c.name.has_key('housename')))
+def _get_closest(*rows: Optional[SaRow]) -> Optional[SaRow]:
+ return min(rows, key=lambda row: 1000 if row is None else row.distance)
class ReverseGeocoder:
""" Class implementing the logic for looking up a place from a
self.layer = layer
self.details = details
+ def layer_enabled(self, *layer: DataLayer) -> bool:
+ """ Return true when any of the given layer types are requested.
+ """
+ return any(self.layer & l for l in layer)
+
+
+ def layer_disabled(self, *layer: DataLayer) -> bool:
+ """ Return true when none of the given layer types is requested.
+ """
+ return not any(self.layer & l for l in layer)
+
+
+ def has_feature_layers(self) -> bool:
+ """ Return true if any layer other than ADDRESS or POI is requested.
+ """
+ return self.layer_enabled(DataLayer.RAILWAY, DataLayer.MANMADE, DataLayer.NATURAL)
def _add_geometry_columns(self, sql: SaSelect, col: SaColumn) -> SaSelect:
if not self.details.geometry_output:
return sql.add_columns(*out)
- def _filter_by_layer(self, table: SaTable) -> SaColumn:
- if self.layer & DataLayer.MANMADE:
+ def _filter_by_layer(self, table: SaFromClause) -> SaColumn:
+ if self.layer_enabled(DataLayer.MANMADE):
exclude = []
- if not (self.layer & DataLayer.RAILWAY):
+ if self.layer_disabled(DataLayer.RAILWAY):
exclude.append('railway')
- if not (self.layer & DataLayer.NATURAL):
+ if self.layer_disabled(DataLayer.NATURAL):
exclude.extend(('natural', 'water', 'waterway'))
return table.c.class_.not_in(tuple(exclude))
include = []
- if self.layer & DataLayer.RAILWAY:
+ if self.layer_enabled(DataLayer.RAILWAY):
include.append('railway')
- if not (self.layer & DataLayer.NATURAL):
+ if self.layer_enabled(DataLayer.NATURAL):
include.extend(('natural', 'water', 'waterway'))
return table.c.class_.in_(tuple(include))
- async def _find_closest_street_or_poi(self, wkt: WKTElement) -> SaRow:
- """ Look up the clostest rank 26+ place in the database.
+ async def _find_closest_street_or_poi(self, wkt: WKTElement,
+ distance: float) -> Optional[SaRow]:
+ """ Look up the closest rank 26+ place in the database, which
+ is closer than the given distance.
"""
t = self.conn.t.placex
.where(t.c.geometry.ST_DWithin(wkt, distance))\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
- .where(sa.or_(t.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(t.c.geometry.ST_GeometryType()
+ .not_in(('ST_Polygon', 'ST_MultiPolygon')),
t.c.centroid.ST_Distance(wkt) < distance))\
.order_by('distance')\
.limit(1)
sql = self._add_geometry_columns(sql, t.c.geometry)
- restrict = []
+ restrict: List[SaColumn] = []
- if self.layer & DataLayer.ADDRESS:
+ if self.layer_enabled(DataLayer.ADDRESS):
restrict.append(sa.and_(t.c.rank_address >= 26,
- t.c.rank_address <= self.max_rank))
+ t.c.rank_address <= min(29, self.max_rank)))
if self.max_rank == 30:
restrict.append(_is_address_point(t))
- if self.layer & DataLayer.POI and max_rank == 30:
+ if self.layer_enabled(DataLayer.POI) and self.max_rank == 30:
restrict.append(sa.and_(t.c.rank_search == 30,
t.c.class_.not_in(('place', 'building')),
t.c.geometry.ST_GeometryType() != 'ST_LineString'))
- if self.layer & (DataLayer.RAILWAY | DataLayer.MANMADE | DataLayer.NATURAL):
- restrict.append(sa.and_(t.c.rank_search >= 26,
- tc.rank_search <= self.max_rank,
+ if self.has_feature_layers():
+ restrict.append(sa.and_(t.c.rank_search.between(26, self.max_rank),
+ t.c.rank_address == 0,
self._filter_by_layer(t)))
- if restrict:
- sql = sql.where(sa.or_(*restrict))
+ if not restrict:
+ return None
- return (await self.conn.execute(sql)).one_or_none()
+ return (await self.conn.execute(sql.where(sa.or_(*restrict)))).one_or_none()
async def _find_housenumber_for_street(self, parent_place_id: int,
wkt: WKTElement) -> Optional[SaRow]:
- t = conn.t.placex
+ t = self.conn.t.placex
sql = _select_from_placex(t, wkt)\
.where(t.c.geometry.ST_DWithin(wkt, 0.001))\
async def _find_interpolation_for_street(self, parent_place_id: Optional[int],
- wkt: WKTElement) -> Optional[SaRow]:
+ wkt: WKTElement,
+ distance: float) -> Optional[SaRow]:
t = self.conn.t.osmline
- inner = sa.select(t,
- t.c.linegeo.ST_Distance(wkt).label('distance'),
- t.c.linegeo.ST_LineLocatePoint(wkt).label('position'))\
- .where(t.c.linegeo.ST_DWithin(wkt, distance))\
- .order_by('distance')\
- .limit(1)
+ sql = sa.select(t,
+ t.c.linegeo.ST_Distance(wkt).label('distance'),
+ _locate_interpolation(t, wkt))\
+ .where(t.c.linegeo.ST_DWithin(wkt, distance))\
+ .where(t.c.startnumber != None)\
+ .order_by('distance')\
+ .limit(1)
if parent_place_id is not None:
- inner = inner.where(t.c.parent_place_id == parent_place_id)
+ sql = sql.where(t.c.parent_place_id == parent_place_id)
- inner = inner.subquery()
+ inner = sql.subquery()
sql = sa.select(inner.c.place_id, inner.c.osm_id,
inner.c.parent_place_id, inner.c.address,
_interpolated_housenumber(inner),
+ _interpolated_position(inner),
inner.c.postcode, inner.c.country_code,
- inner.c.linegeo.ST_LineInterpolatePoint(inner.c.position).label('centroid'),
inner.c.distance)
if self.details.geometry_output:
async def _find_tiger_number_for_street(self, parent_place_id: int,
+ parent_type: str, parent_id: int,
wkt: WKTElement) -> Optional[SaRow]:
t = self.conn.t.tiger
inner = sa.select(t,
t.c.linegeo.ST_Distance(wkt).label('distance'),
- sa.func.ST_LineLocatePoint(t.c.linegeo, wkt).label('position'))\
+ _locate_interpolation(t, wkt))\
.where(t.c.linegeo.ST_DWithin(wkt, 0.001))\
.where(t.c.parent_place_id == parent_place_id)\
.order_by('distance')\
sql = sa.select(inner.c.place_id,
inner.c.parent_place_id,
+ sa.literal(parent_type).label('osm_type'),
+ sa.literal(parent_id).label('osm_id'),
_interpolated_housenumber(inner),
+ _interpolated_position(inner),
inner.c.postcode,
- inner.c.linegeo.ST_LineInterpolatePoint(inner.c.position).label('centroid'),
inner.c.distance)
if self.details.geometry_output:
sub = sql.subquery()
sql = self._add_geometry_columns(sql, sub.c.centroid)
- return (await conn.execute(sql)).one_or_none()
+ return (await self.conn.execute(sql)).one_or_none()
- async def lookup_street_poi(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
+ async def lookup_street_poi(self,
+ wkt: WKTElement) -> Tuple[Optional[SaRow], RowFunc]:
""" Find a street or POI/address for the given WKT point.
"""
log().section('Reverse lookup on street/address level')
- result = None
distance = 0.006
parent_place_id = None
- row = await self._find_closest_street_or_poi(wkt)
+ row = await self._find_closest_street_or_poi(wkt, distance)
+ row_func: RowFunc = nres.create_from_placex_row
log().var_dump('Result (street/building)', row)
# If the closest result was a street, but an address was requested,
# check for a housenumber nearby which is part of the street.
if row is not None:
if self.max_rank > 27 \
- and self.layer & DataLayer.ADDRESS \
+ and self.layer_enabled(DataLayer.ADDRESS) \
and row.rank_address <= 27:
distance = 0.001
parent_place_id = row.place_id
if addr_row is not None:
row = addr_row
+ row_func = nres.create_from_placex_row
distance = addr_row.distance
elif row.country_code == 'us' and parent_place_id is not None:
log().comment('Find TIGER housenumber for street')
- addr_row = await self._find_tiger_number_for_street(parent_place_id, wkt)
+ addr_row = await self._find_tiger_number_for_street(parent_place_id,
+ row.osm_type,
+ row.osm_id,
+ wkt)
log().var_dump('Result (street Tiger housenumber)', addr_row)
if addr_row is not None:
- result = nres.create_from_tiger_row(addr_row)
+ row = addr_row
+ row_func = nres.create_from_tiger_row
else:
distance = row.distance
# Check for an interpolation that is either closer than our result
# or belongs to a close street found.
- if self.max_rank > 27 and self.layer & DataLayer.ADDRESS:
+ if self.max_rank > 27 and self.layer_enabled(DataLayer.ADDRESS):
log().comment('Find interpolation for street')
- addr_row = await self._find_interpolation_for_street(parent_place_id, wkt)
+ addr_row = await self._find_interpolation_for_street(parent_place_id,
+ wkt, distance)
log().var_dump('Result (street interpolation)', addr_row)
if addr_row is not None:
- result = nres.create_from_osmline_row(addr_row)
+ row = addr_row
+ row_func = nres.create_from_osmline_row
- return result or nres.create_from_placex_row(row)
+ return row, row_func
async def _lookup_area_address(self, wkt: WKTElement) -> Optional[SaRow]:
address_row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (area)', address_row)
- if address_row is not None and address_row.rank_search < max_rank:
+ if address_row is not None and address_row.rank_search < self.max_rank:
log().comment('Search for better matching place nodes inside the area')
inner = sa.select(t,
t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.osm_type == 'N')\
.where(t.c.rank_search > address_row.rank_search)\
- .where(t.c.rank_search <= max_rank)\
+ .where(t.c.rank_search <= self.max_rank)\
.where(t.c.rank_address.between(5, 25))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.limit(50)\
.subquery()
- touter = conn.t.placex.alias('outer')
+ touter = self.conn.t.placex.alias('outer')
sql = _select_from_placex(inner)\
+ .join(touter, touter.c.geometry.ST_Contains(inner.c.geometry))\
.where(touter.c.place_id == address_row.place_id)\
- .where(touter.c.geometry.ST_Contains(inner.c.geometry))\
.where(inner.c.distance < sa.func.reverse_place_diameter(inner.c.rank_search))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
async def _lookup_area_others(self, wkt: WKTElement) -> Optional[SaRow]:
- t = conn.t.placex
+ t = self.conn.t.placex
inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.rank_address == 0)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(self._filter_by_layer(t))\
- .where(sa.func.reverse_buffered_extent(t.c.geometry, type_=Geometry)
+ .where(t.c.geometry
+ .ST_Buffer(sa.func.reverse_place_diameter(t.c.rank_search))
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
- .limit(50)
+ .limit(50)\
+ .subquery()
sql = _select_from_placex(inner)\
- .where(sa._or(inner.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(inner.c.geometry.ST_GeometryType()
+ .not_in(('ST_Polygon', 'ST_MultiPolygon')),
inner.c.geometry.ST_Contains(wkt)))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
return row
- async def lookup_area(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
+ async def lookup_area(self, wkt: WKTElement) -> Optional[SaRow]:
""" Lookup large areas for the given WKT point.
"""
log().section('Reverse lookup by larger area features')
- t = self.conn.t.placex
- if self.layer & DataLayer.ADDRESS:
+ if self.layer_enabled(DataLayer.ADDRESS):
address_row = await self._lookup_area_address(wkt)
- address_distance = address_row.distance
else:
address_row = None
- address_distance = 1000
- if self.layer & (~DataLayer.ADDRESS & ~DataLayer.POI):
+ if self.has_feature_layers():
other_row = await self._lookup_area_others(wkt)
- other_distance = other_row.distance
else:
other_row = None
- other_distance = 1000
- result = address_row if address_distance <= other_distance else other_row
+ return _get_closest(address_row, other_row)
- return nres.create_from_placex_row(result)
-
- async def lookup_country(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
+ async def lookup_country(self, wkt: WKTElement) -> Optional[SaRow]:
""" Lookup the country for the given WKT point.
"""
log().section('Reverse lookup by country code')
if not ccodes:
return None
- if self.layer & DataLayer.ADDRESS and self.max_rank > 4:
+ t = self.conn.t.placex
+ if self.max_rank > 4:
log().comment('Search for place nodes in country')
- t = conn.t.placex
inner = sa.select(t,
t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.osm_type == 'N')\
else:
address_row = None
- if layer & (~DataLayer.ADDRESS & ~DataLayer.POI) and self.max_rank > 4:
- log().comment('Search for non-address features inside country')
-
- t = conn.t.placex
- inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
- .where(t.c.rank_address == 0)\
- .where(t.c.rank_search.between(5, self.max_rank))\
- .where(t.c.name != None)\
- .where(t.c.indexed_status == 0)\
- .where(t.c.linked_place_id == None)\
- .where(self._filter_by_layer(t))\
- .where(t.c.country_code.in_(ccode))\
- .where(sa.func.reverse_buffered_extent(t.c.geometry, type_=Geometry)
- .intersects(wkt))\
- .order_by(sa.desc(t.c.rank_search))\
- .limit(50)\
- .subquery()
-
- sql = _select_from_placex(inner)\
- .where(sa._or(inner.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
- inner.c.geometry.ST_Contains(wkt)))\
- .order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
- .limit(1)
-
- sql = self._add_geometry_columns(sql, inner.c.geometry)
-
- other_row = (await self.conn.execute(sql)).one_or_none()
- log().var_dump('Result (non-address feature)', other_row)
- else:
- other_row = None
-
- if layer & DataLayer.ADDRESS and address_row is None and other_row is None:
+ if address_row is None:
# Still nothing, then return a country with the appropriate country code.
- t = conn.t.placex
sql = _select_from_placex(t, wkt)\
.where(t.c.country_code.in_(ccodes))\
.where(t.c.rank_address == 4)\
.where(t.c.rank_search == 4)\
.where(t.c.linked_place_id == None)\
- .order_by('distance')
+ .order_by('distance')\
+ .limit(1)
- sql = self._add_geometry_columns(sql, inner.c.geometry)
+ sql = self._add_geometry_columns(sql, t.c.geometry)
address_row = (await self.conn.execute(sql)).one_or_none()
- return nres.create_from_placex_row(_get_closest_row(address_row, other_row))
+ return address_row
async def lookup(self, coord: AnyPoint) -> Optional[nres.ReverseResult]:
wkt = WKTElement(f'POINT({coord[0]} {coord[1]})', srid=4326)
- result: Optional[ReverseResult] = None
+ row: Optional[SaRow] = None
+ row_func: RowFunc = nres.create_from_placex_row
+
+ if self.max_rank >= 26:
+ row, tmp_row_func = await self.lookup_street_poi(wkt)
+ if row is not None:
+ row_func = tmp_row_func
+ if row is None and self.max_rank > 4:
+ row = await self.lookup_area(wkt)
+ if row is None and self.layer_enabled(DataLayer.ADDRESS):
+ row = await self.lookup_country(wkt)
- if max_rank >= 26:
- result = await self.lookup_street_poi(wkt)
- if result is None and max_rank > 4:
- result = await self.lookup_area(wkt)
- if result is None:
- result = await self.lookup_country(wkt)
+ result = row_func(row, nres.ReverseResult)
if result is not None:
+ assert row is not None
+ result.distance = row.distance
+ if hasattr(row, 'bbox'):
+ result.bbox = Bbox.from_wkb(row.bbox.data)
await nres.add_result_details(self.conn, result, self.details)
return result