"""
Implementation of query analysis for the ICU tokenizer.
"""
-from typing import Tuple, Dict, List, Optional, NamedTuple, Iterator, Any, cast
+from typing import Tuple, Dict, List, Optional, Iterator, Any, cast
from collections import defaultdict
import dataclasses
import difflib
'C': qmod.TokenType.COUNTRY
}
+PENALTY_IN_TOKEN_BREAK = {
+ qmod.BreakType.START: 0.5,
+ qmod.BreakType.END: 0.5,
+ qmod.BreakType.PHRASE: 0.5,
+ qmod.BreakType.SOFT_PHRASE: 0.5,
+ qmod.BreakType.WORD: 0.1,
+ qmod.BreakType.PART: 0.0,
+ qmod.BreakType.TOKEN: 0.0
+}
+
-class QueryPart(NamedTuple):
+@dataclasses.dataclass
+class QueryPart:
""" Normalized and transliterated form of a single term in the query.
When the term came out of a split during the transliteration,
the normalized string is the full word before transliteration.
The word number keeps track of the word before transliteration
and can be used to identify partial transliterated terms.
+ Penalty is the break penalty for the break following the token.
"""
token: str
normalized: str
word_number: int
+ penalty: float
QueryParts = List[QueryPart]
total = len(terms)
for first in range(start, total):
word = terms[first].token
- yield word, qmod.TokenRange(first, first + 1)
+ penalty = PENALTY_IN_TOKEN_BREAK[qmod.BreakType.WORD]
+ yield word, qmod.TokenRange(first, first + 1, penalty=penalty)
for last in range(first + 1, min(first + 20, total)):
word = ' '.join((word, terms[last].token))
- yield word, qmod.TokenRange(first, last + 1)
+ penalty += terms[last - 1].penalty
+ yield word, qmod.TokenRange(first, last + 1, penalty=penalty)
@dataclasses.dataclass
self.penalty += (distance/len(self.lookup_word))
@staticmethod
- def from_db_row(row: SaRow) -> 'ICUToken':
+ def from_db_row(row: SaRow, base_penalty: float = 0.0) -> 'ICUToken':
""" Create a ICUToken from the row of the word table.
"""
count = 1 if row.info is None else row.info.get('count', 1)
addr_count = 1 if row.info is None else row.info.get('addr_count', 1)
- penalty = 0.0
+ penalty = base_penalty
if row.type == 'w':
- penalty = 0.3
+ penalty += 0.3
elif row.type == 'W':
if len(row.word_token) == 1 and row.word_token == row.word:
- penalty = 0.2 if row.word.isdigit() else 0.3
+ penalty += 0.2 if row.word.isdigit() else 0.3
elif row.type == 'H':
- penalty = sum(0.1 for c in row.word_token if c != ' ' and not c.isdigit())
+ penalty += sum(0.1 for c in row.word_token if c != ' ' and not c.isdigit())
if all(not c.isdigit() for c in row.word_token):
penalty += 0.2 * (len(row.word_token) - 1)
elif row.type == 'C':
if len(row.word_token) == 1:
- penalty = 0.3
+ penalty += 0.3
if row.info is None:
lookup_word = row.word
for row in await self.lookup_in_db(list(words.keys())):
for trange in words[row.word_token]:
- token = ICUToken.from_db_row(row)
+ token = ICUToken.from_db_row(row, trange.penalty or 0.0)
if row.type == 'S':
if row.info['op'] in ('in', 'near'):
if trange.start == 0:
if trans:
for term in trans.split(' '):
if term:
- parts.append(QueryPart(term, word, wordnr))
+ parts.append(QueryPart(term, word, wordnr,
+ PENALTY_IN_TOKEN_BREAK[qmod.BreakType.TOKEN]))
query.add_node(qmod.BreakType.TOKEN, phrase.ptype)
query.nodes[-1].btype = qmod.BreakType(breakchar)
+ parts[-1].penalty = PENALTY_IN_TOKEN_BREAK[qmod.BreakType(breakchar)]
wordnr += 1
for word, wrange in yield_words(parts, phrase_start):
""" Add tokens to query that are not saved in the database.
"""
for part, node, i in zip(parts, query.nodes, range(1000)):
- if len(part.token) <= 4 and part[0].isdigit()\
+ if len(part.token) <= 4 and part.token.isdigit()\
and not node.has_tokens(i+1, qmod.TokenType.HOUSENUMBER):
query.add_token(qmod.TokenRange(i, i+1), qmod.TokenType.HOUSENUMBER,
ICUToken(penalty=0.5, token=0,