penalty = min(categories.penalties)
categories.penalties = [p - penalty for p in categories.penalties]
for search in builder:
- yield dbs.NearSearch(penalty, categories, search)
+ yield dbs.NearSearch(penalty + assignment.penalty, categories, search)
else:
- yield from builder
+ for search in builder:
+ search.penalty += assignment.penalty
+ yield search
def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
partials_indexed = all(t.is_indexed for t in name_partials) \
and all(t.is_indexed for t in addr_partials)
- exp_count = min(t.count for t in name_partials)
+ exp_count = min(t.count for t in name_partials) / (2**(len(name_partials) - 1))
- if (len(name_partials) > 3 or exp_count < 1000) and partials_indexed:
+ if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
return
- exp_count = min(exp_count, min(t.count for t in addr_partials)) \
- if addr_partials else exp_count
- if exp_count < 1000 and partials_indexed:
- # Lookup by address partials and restrict results through name terms.
- # Give this a small penalty because lookups in the address index are
- # more expensive
- yield penalty + exp_count/5000, exp_count,\
- dbf.lookup_by_addr(name_tokens, addr_tokens)
- return
-
# Partial term to frequent. Try looking up by rare full names first.
name_fulls = self.query.get_tokens(name, TokenType.WORD)
- rare_names = list(filter(lambda t: t.count < 10000, name_fulls))
+ fulls_count = sum(t.count for t in name_fulls)
# At this point drop unindexed partials from the address.
# This might yield wrong results, nothing we can do about that.
if not partials_indexed:
addr_tokens = [t.token for t in addr_partials if t.is_indexed]
penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
- if rare_names:
- # Any of the full names applies with all of the partials from the address
- yield penalty, sum(t.count for t in rare_names),\
- dbf.lookup_by_any_name([t.token for t in rare_names], addr_tokens)
+ # Any of the full names applies with all of the partials from the address
+ yield penalty, fulls_count / (2**len(addr_partials)),\
+ dbf.lookup_by_any_name([t.token for t in name_fulls], addr_tokens,
+ 'restrict' if fulls_count < 10000 else 'lookup_all')
# To catch remaining results, lookup by name and address
# We only do this if there is a reasonable number of results expected.
- if exp_count < 10000:
- if all(t.is_indexed for t in name_partials):
- lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
- else:
- # we don't have the partials, try with the non-rare names
- non_rare_names = [t.token for t in name_fulls if t.count >= 10000]
- if not non_rare_names:
- return
- lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
+ exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
+ if exp_count < 10000 and all(t.is_indexed for t in name_partials):
+ lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
if addr_tokens:
lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
- penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
- if len(rare_names) == len(name_fulls):
- # if there already was a search for all full tokens,
- # avoid this if anything has been found
- penalty += 0.25
+ penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
yield penalty, exp_count, lookup