+# SPDX-License-Identifier: GPL-2.0-only
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2022 by the Nominatim developer community.
+# For a full list of authors see the git log.
"""
Tokenizer implementing normalisation as used before Nominatim 4.
"""
from nominatim.db import utils as db_utils
from nominatim.db.sql_preprocessor import SQLPreprocessor
from nominatim.errors import UsageError
+from nominatim.tokenizer.base import AbstractAnalyzer, AbstractTokenizer
DBCFG_NORMALIZATION = "tokenizer_normalization"
DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq"
raise UsageError("Database module cannot be accessed.") from err
-class LegacyTokenizer:
+class LegacyTokenizer(AbstractTokenizer):
""" The legacy tokenizer uses a special PostgreSQL module to normalize
names and queries. The tokenizer thus implements normalization through
calls to the database.
self.normalization = config.TERM_NORMALIZATION
- self._install_php(config)
+ self._install_php(config, overwrite=True)
with connect(self.dsn) as conn:
_check_module(module_dir, conn)
self._init_db_tables(config)
- def init_from_project(self):
+ def init_from_project(self, config):
""" Initialise the tokenizer from the project directory.
"""
with connect(self.dsn) as conn:
self.normalization = properties.get_property(conn, DBCFG_NORMALIZATION)
+ if not (config.project_dir / 'module' / 'nominatim.so').exists():
+ _install_module(config.DATABASE_MODULE_PATH,
+ config.lib_dir.module,
+ config.project_dir / 'module')
+
+ self._install_php(config, overwrite=False)
def finalize_import(self, config):
""" Do any required postprocessing to make the tokenizer data ready
modulepath=modulepath)
- def check_database(self):
+ def check_database(self, _):
""" Check that the tokenizer is set up correctly.
"""
hint = """\
self._save_config(conn, config)
+ def update_statistics(self):
+ """ Recompute the frequency of full words.
+ """
+ with connect(self.dsn) as conn:
+ if conn.table_exists('search_name'):
+ with conn.cursor() as cur:
+ cur.drop_table("word_frequencies")
+ LOG.info("Computing word frequencies")
+ cur.execute("""CREATE TEMP TABLE word_frequencies AS
+ SELECT unnest(name_vector) as id, count(*)
+ FROM search_name GROUP BY id""")
+ cur.execute("CREATE INDEX ON word_frequencies(id)")
+ LOG.info("Update word table with recomputed frequencies")
+ cur.execute("""UPDATE word SET search_name_count = count
+ FROM word_frequencies
+ WHERE word_token like ' %' and word_id = id""")
+ cur.drop_table("word_frequencies")
+ conn.commit()
+
+
+ def update_word_tokens(self):
+ """ No house-keeping implemented for the legacy tokenizer.
+ """
+ LOG.info("No tokenizer clean-up available.")
+
+
def name_analyzer(self):
""" Create a new analyzer for tokenizing names and queries
using this tokinzer. Analyzers are context managers and should
return LegacyNameAnalyzer(self.dsn, normalizer)
- def _install_php(self, config):
+ def _install_php(self, config, overwrite=True):
""" Install the php script for the tokenizer.
"""
php_file = self.data_dir / "tokenizer.php"
- php_file.write_text(dedent("""\
- <?php
- @define('CONST_Max_Word_Frequency', {0.MAX_WORD_FREQUENCY});
- @define('CONST_Term_Normalization_Rules', "{0.TERM_NORMALIZATION}");
- require_once('{0.lib_dir.php}/tokenizer/legacy_tokenizer.php');
- """.format(config)))
+
+ if not php_file.exists() or overwrite:
+ php_file.write_text(dedent("""\
+ <?php
+ @define('CONST_Max_Word_Frequency', {0.MAX_WORD_FREQUENCY});
+ @define('CONST_Term_Normalization_Rules', "{0.TERM_NORMALIZATION}");
+ require_once('{0.lib_dir.php}/tokenizer/legacy_tokenizer.php');
+ """.format(config)))
def _init_db_tables(self, config):
properties.set_property(conn, DBCFG_MAXWORDFREQ, config.MAX_WORD_FREQUENCY)
-class LegacyNameAnalyzer:
+class LegacyNameAnalyzer(AbstractAnalyzer):
""" The legacy analyzer uses the special Postgresql module for
splitting names.
self._cache = _TokenCache(self.conn)
- def __enter__(self):
- return self
-
-
- def __exit__(self, exc_type, exc_value, traceback):
- self.close()
-
-
def close(self):
""" Free all resources used by the analyzer.
"""
"""
token_info = _TokenInfo(self._cache)
- names = place.get('name')
+ names = place.name
if names:
token_info.add_names(self.conn, names)
- country_feature = place.get('country_feature')
- if country_feature and re.fullmatch(r'[A-Za-z][A-Za-z]', country_feature):
- self.add_country_names(country_feature.lower(), names)
+ if place.is_country():
+ self.add_country_names(place.country_code, names)
- address = place.get('address')
+ address = place.address
if address:
self._process_place_address(token_info, address)
simple_list = list(set(simple_list))
with conn.cursor() as cur:
- cur.execute("SELECT (create_housenumbers(%s)).* ", (simple_list, ))
+ cur.execute("SELECT * FROM create_housenumbers(%s)", (simple_list, ))
self.data['hnr_tokens'], self.data['hnr'] = cur.fetchone()
with conn.cursor() as cur:
return cur.scalar("SELECT word_ids_from_name(%s)::text", (name, ))
- self.data['street'] = self.cache.streets.get(street, _get_street)
+ tokens = self.cache.streets.get(street, _get_street)
+ if tokens:
+ self.data['street'] = tokens
def add_place(self, conn, place):
tokens = {}
for key, value in terms:
- tokens[key] = self.cache.address_terms.get(value, _get_address_term)
+ items = self.cache.address_terms.get(value, _get_address_term)
+ if items[0] or items[1]:
+ tokens[key] = items
- self.data['addr'] = tokens
+ if tokens:
+ self.data['addr'] = tokens
class _LRU: