]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/tokenizer/token_analysis/generic.py
add consistent SPDX copyright headers
[nominatim.git] / nominatim / tokenizer / token_analysis / generic.py
index 2c720f1d6af9e38b93e6eea95f4ed70de866235a..f790dad27a24d9f11300ab1f6d78c147b829797b 100644 (file)
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2022 by the Nominatim developer community.
+# For a full list of authors see the git log.
 """
 Generic processor for names that creates abbreviation variants.
 """
 """
 Generic processor for names that creates abbreviation variants.
 """
-from collections import defaultdict
+from collections import defaultdict, namedtuple
 import itertools
 import itertools
+import re
 
 from icu import Transliterator
 import datrie
 
 
 from icu import Transliterator
 import datrie
 
-### Analysis section
+from nominatim.config import flatten_config_list
+from nominatim.errors import UsageError
 
 
-def create(norm_rules, trans_rules, config):
-    """ Create a new token analysis instance for this module.
+### Configuration section
+
+ICUVariant = namedtuple('ICUVariant', ['source', 'replacement'])
+
+def configure(rules, normalization_rules):
+    """ Extract and preprocess the configuration for this module.
     """
     """
-    return GenericTokenAnalysis(norm_rules, trans_rules, config['variants'])
+    config = {}
 
 
+    config['replacements'], config['chars'] = _get_variant_config(rules.get('variants'),
+                                                                  normalization_rules)
+    config['variant_only'] = rules.get('mode', '') == 'variant-only'
 
 
-class GenericTokenAnalysis:
-    """ Collects the different transformation rules for normalisation of names
-        and provides the functions to apply the transformations.
+    return config
+
+
+def _get_variant_config(rules, normalization_rules):
+    """ Convert the variant definition from the configuration into
+        replacement sets.
     """
     """
+    immediate = defaultdict(list)
+    chars = set()
+
+    if rules:
+        vset = set()
+        rules = flatten_config_list(rules, 'variants')
 
 
-    def __init__(self, norm_rules, trans_rules, replacements):
-        self.normalizer = Transliterator.createFromRules("icu_normalization",
-                                                         norm_rules)
-        self.to_ascii = Transliterator.createFromRules("icu_to_ascii",
-                                                       trans_rules +
-                                                       ";[:Space:]+ > ' '")
-        self.search = Transliterator.createFromRules("icu_search",
-                                                     norm_rules + trans_rules)
+        vmaker = _VariantMaker(normalization_rules)
+
+        for section in rules:
+            for rule in (section.get('words') or []):
+                vset.update(vmaker.compute(rule))
 
         # Intermediate reorder by source. Also compute required character set.
 
         # Intermediate reorder by source. Also compute required character set.
-        immediate = defaultdict(list)
-        chars = set()
-        for variant in replacements:
+        for variant in vset:
             if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
                 replstr = variant.replacement[:-1]
             else:
                 replstr = variant.replacement
             immediate[variant.source].append(replstr)
             chars.update(variant.source)
             if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
                 replstr = variant.replacement[:-1]
             else:
                 replstr = variant.replacement
             immediate[variant.source].append(replstr)
             chars.update(variant.source)
-        # Then copy to datrie
-        self.replacements = datrie.Trie(''.join(chars))
-        for src, repllist in immediate.items():
-            self.replacements[src] = repllist
 
 
+    return list(immediate.items()), ''.join(chars)
+
+
+class _VariantMaker:
+    """ Generater for all necessary ICUVariants from a single variant rule.
 
 
-    def get_normalized(self, name):
-        """ Normalize the given name, i.e. remove all elements not relevant
-            for search.
+        All text in rules is normalized to make sure the variants match later.
+    """
+
+    def __init__(self, norm_rules):
+        self.norm = Transliterator.createFromRules("rule_loader_normalization",
+                                                   norm_rules)
+
+
+    def compute(self, rule):
+        """ Generator for all ICUVariant tuples from a single variant rule.
         """
         """
-        return self.normalizer.transliterate(name).strip()
+        parts = re.split(r'(\|)?([=-])>', rule)
+        if len(parts) != 4:
+            raise UsageError("Syntax error in variant rule: " + rule)
+
+        decompose = parts[1] is None
+        src_terms = [self._parse_variant_word(t) for t in parts[0].split(',')]
+        repl_terms = (self.norm.transliterate(t).strip() for t in parts[3].split(','))
+
+        # If the source should be kept, add a 1:1 replacement
+        if parts[2] == '-':
+            for src in src_terms:
+                if src:
+                    for froms, tos in _create_variants(*src, src[0], decompose):
+                        yield ICUVariant(froms, tos)
+
+        for src, repl in itertools.product(src_terms, repl_terms):
+            if src and repl:
+                for froms, tos in _create_variants(*src, repl, decompose):
+                    yield ICUVariant(froms, tos)
+
+
+    def _parse_variant_word(self, name):
+        name = name.strip()
+        match = re.fullmatch(r'([~^]?)([^~$^]*)([~$]?)', name)
+        if match is None or (match.group(1) == '~' and match.group(3) == '~'):
+            raise UsageError("Invalid variant word descriptor '{}'".format(name))
+        norm_name = self.norm.transliterate(match.group(2)).strip()
+        if not norm_name:
+            return None
+
+        return norm_name, match.group(1), match.group(3)
+
+
+_FLAG_MATCH = {'^': '^ ',
+               '$': ' ^',
+               '': ' '}
+
+
+def _create_variants(src, preflag, postflag, repl, decompose):
+    if preflag == '~':
+        postfix = _FLAG_MATCH[postflag]
+        # suffix decomposition
+        src = src + postfix
+        repl = repl + postfix
+
+        yield src, repl
+        yield ' ' + src, ' ' + repl
+
+        if decompose:
+            yield src, ' ' + repl
+            yield ' ' + src, repl
+    elif postflag == '~':
+        # prefix decomposition
+        prefix = _FLAG_MATCH[preflag]
+        src = prefix + src
+        repl = prefix + repl
+
+        yield src, repl
+        yield src + ' ', repl + ' '
+
+        if decompose:
+            yield src, repl + ' '
+            yield src + ' ', repl
+    else:
+        prefix = _FLAG_MATCH[preflag]
+        postfix = _FLAG_MATCH[postflag]
+
+        yield prefix + src + postfix, prefix + repl + postfix
+
+
+### Analysis section
+
+def create(transliterator, config):
+    """ Create a new token analysis instance for this module.
+    """
+    return GenericTokenAnalysis(transliterator, config)
+
+
+class GenericTokenAnalysis:
+    """ Collects the different transformation rules for normalisation of names
+        and provides the functions to apply the transformations.
+    """
+
+    def __init__(self, to_ascii, config):
+        self.to_ascii = to_ascii
+        self.variant_only = config['variant_only']
+
+        # Set up datrie
+        if config['replacements']:
+            self.replacements = datrie.Trie(config['chars'])
+            for src, repllist in config['replacements']:
+                self.replacements[src] = repllist
+        else:
+            self.replacements = None
+
 
     def get_variants_ascii(self, norm_name):
         """ Compute the spelling variants for the given normalized name
 
     def get_variants_ascii(self, norm_name):
         """ Compute the spelling variants for the given normalized name
@@ -59,52 +180,51 @@ class GenericTokenAnalysis:
         partials = ['']
 
         startpos = 0
         partials = ['']
 
         startpos = 0
-        pos = 0
-        force_space = False
-        while pos < len(baseform):
-            full, repl = self.replacements.longest_prefix_item(baseform[pos:],
-                                                               (None, None))
-            if full is not None:
-                done = baseform[startpos:pos]
-                partials = [v + done + r
-                            for v, r in itertools.product(partials, repl)
-                            if not force_space or r.startswith(' ')]
-                if len(partials) > 128:
-                    # If too many variants are produced, they are unlikely
-                    # to be helpful. Only use the original term.
-                    startpos = 0
-                    break
-                startpos = pos + len(full)
-                if full[-1] == ' ':
-                    startpos -= 1
-                    force_space = True
-                pos = startpos
-            else:
-                pos += 1
-                force_space = False
+        if self.replacements is not None:
+            pos = 0
+            force_space = False
+            while pos < len(baseform):
+                full, repl = self.replacements.longest_prefix_item(baseform[pos:],
+                                                                   (None, None))
+                if full is not None:
+                    done = baseform[startpos:pos]
+                    partials = [v + done + r
+                                for v, r in itertools.product(partials, repl)
+                                if not force_space or r.startswith(' ')]
+                    if len(partials) > 128:
+                        # If too many variants are produced, they are unlikely
+                        # to be helpful. Only use the original term.
+                        startpos = 0
+                        break
+                    startpos = pos + len(full)
+                    if full[-1] == ' ':
+                        startpos -= 1
+                        force_space = True
+                    pos = startpos
+                else:
+                    pos += 1
+                    force_space = False
 
         # No variants detected? Fast return.
         if startpos == 0:
 
         # No variants detected? Fast return.
         if startpos == 0:
+            if self.variant_only:
+                return []
+
             trans_name = self.to_ascii.transliterate(norm_name).strip()
             return [trans_name] if trans_name else []
 
             trans_name = self.to_ascii.transliterate(norm_name).strip()
             return [trans_name] if trans_name else []
 
-        return self._compute_result_set(partials, baseform[startpos:])
+        return self._compute_result_set(partials, baseform[startpos:],
+                                        norm_name if self.variant_only else '')
 
 
 
 
-    def _compute_result_set(self, partials, prefix):
+    def _compute_result_set(self, partials, prefix, exclude):
         results = set()
 
         for variant in partials:
         results = set()
 
         for variant in partials:
-            vname = variant + prefix
-            trans_name = self.to_ascii.transliterate(vname[1:-1]).strip()
-            if trans_name:
-                results.add(trans_name)
+            vname = (variant + prefix)[1:-1].strip()
+            if vname != exclude:
+                trans_name = self.to_ascii.transliterate(vname).strip()
+                if trans_name:
+                    results.add(trans_name)
 
         return list(results)
 
         return list(results)
-
-
-    def get_search_normalized(self, name):
-        """ Return the normalized version of the name (including transliteration)
-            to be applied at search time.
-        """
-        return self.search.transliterate(' ' + name + ' ').strip()