]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/tools/convert_sqlite.py
Correct some typos
[nominatim.git] / nominatim / tools / convert_sqlite.py
index 42977ce8659e78cd34dff31789f2ded3f3225c09..1e7beae57645c172e15f72f999ce178a0ea4beeb 100644 (file)
@@ -7,13 +7,20 @@
 """
 Exporting a Nominatim database to SQlite.
 """
 """
 Exporting a Nominatim database to SQlite.
 """
-from typing import Set
+from typing import Set, Any
+import datetime as dt
+import logging
 from pathlib import Path
 
 import sqlalchemy as sa
 
 from pathlib import Path
 
 import sqlalchemy as sa
 
+from nominatim.typing import SaSelect, SaRow
+from nominatim.db.sqlalchemy_types import Geometry, IntArray
+from nominatim.api.search.query_analyzer_factory import make_query_analyzer
 import nominatim.api as napi
 
 import nominatim.api as napi
 
+LOG = logging.getLogger()
+
 async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None:
     """ Export an existing database to sqlite. The resulting database
         will be usable against the Python frontend of Nominatim.
 async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None:
     """ Export an existing database to sqlite. The resulting database
         will be usable against the Python frontend of Nominatim.
@@ -22,9 +29,237 @@ async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None:
 
     try:
         outapi = napi.NominatimAPIAsync(project_dir,
 
     try:
         outapi = napi.NominatimAPIAsync(project_dir,
-                                        {'NOMINATIM_DATABASE_DSN': f"sqlite:dbname={outfile}"})
+                                        {'NOMINATIM_DATABASE_DSN': f"sqlite:dbname={outfile}",
+                                         'NOMINATIM_DATABASE_RW': '1'})
 
 
-        async with api.begin() as inconn, outapi.begin() as outconn:
-            pass
+        try:
+            async with api.begin() as src, outapi.begin() as dest:
+                writer = SqliteWriter(src, dest, options)
+                await writer.write()
+        finally:
+            await outapi.close()
     finally:
         await api.close()
     finally:
         await api.close()
+
+
+class SqliteWriter:
+    """ Worker class which creates a new SQLite database.
+    """
+
+    def __init__(self, src: napi.SearchConnection,
+                 dest: napi.SearchConnection, options: Set[str]) -> None:
+        self.src = src
+        self.dest = dest
+        self.options = options
+
+
+    async def write(self) -> None:
+        """ Create the database structure and copy the data from
+            the source database to the destination.
+        """
+        LOG.warning('Setting up spatialite')
+        await self.dest.execute(sa.select(sa.func.InitSpatialMetaData(True, 'WGS84')))
+
+        await self.create_tables()
+        await self.copy_data()
+        if 'search' in self.options:
+            await self.create_word_table()
+        await self.create_indexes()
+
+
+    async def create_tables(self) -> None:
+        """ Set up the database tables.
+        """
+        LOG.warning('Setting up tables')
+        if 'search' not in self.options:
+            self.dest.t.meta.remove(self.dest.t.search_name)
+        else:
+            await self.create_class_tables()
+
+        await self.dest.connection.run_sync(self.dest.t.meta.create_all)
+
+        # Convert all Geometry columns to Spatialite geometries
+        for table in self.dest.t.meta.sorted_tables:
+            for col in table.c:
+                if isinstance(col.type, Geometry):
+                    await self.dest.execute(sa.select(
+                        sa.func.RecoverGeometryColumn(table.name, col.name, 4326,
+                                                      col.type.subtype.upper(), 'XY')))
+
+
+    async def create_class_tables(self) -> None:
+        """ Set up the table that serve class/type-specific geometries.
+        """
+        sql = sa.text("""SELECT tablename FROM pg_tables
+                         WHERE tablename LIKE 'place_classtype_%'""")
+        for res in await self.src.execute(sql):
+            for db in (self.src, self.dest):
+                sa.Table(res[0], db.t.meta,
+                         sa.Column('place_id', sa.BigInteger),
+                         sa.Column('centroid', Geometry))
+
+
+    async def create_word_table(self) -> None:
+        """ Create the word table.
+            This table needs the property information to determine the
+            correct format. Therefore needs to be done after all other
+            data has been copied.
+        """
+        await make_query_analyzer(self.src)
+        await make_query_analyzer(self.dest)
+        src = self.src.t.meta.tables['word']
+        dest = self.dest.t.meta.tables['word']
+
+        await self.dest.connection.run_sync(dest.create)
+
+        LOG.warning("Copying word table")
+        async_result = await self.src.connection.stream(sa.select(src))
+
+        async for partition in async_result.partitions(10000):
+            data = [{k: getattr(r, k) for k in r._fields} for r in partition]
+            await self.dest.execute(dest.insert(), data)
+
+        await self.dest.connection.run_sync(sa.Index('idx_word_woken', dest.c.word_token).create)
+
+
+    async def copy_data(self) -> None:
+        """ Copy data for all registered tables.
+        """
+        def _getfield(row: SaRow, key: str) -> Any:
+            value = getattr(row, key)
+            if isinstance(value, dt.datetime):
+                if value.tzinfo is not None:
+                    value = value.astimezone(dt.timezone.utc)
+            return value
+
+        for table in self.dest.t.meta.sorted_tables:
+            LOG.warning("Copying '%s'", table.name)
+            async_result = await self.src.connection.stream(self.select_from(table.name))
+
+            async for partition in async_result.partitions(10000):
+                data = [{('class_' if k == 'class' else k): _getfield(r, k)
+                         for k in r._fields}
+                        for r in partition]
+                await self.dest.execute(table.insert(), data)
+
+        # Set up a minimal copy of pg_tables used to look up the class tables later.
+        pg_tables = sa.Table('pg_tables', self.dest.t.meta,
+                             sa.Column('schemaname', sa.Text, default='public'),
+                             sa.Column('tablename', sa.Text))
+        await self.dest.connection.run_sync(pg_tables.create)
+        data = [{'tablename': t} for t in self.dest.t.meta.tables]
+        await self.dest.execute(pg_tables.insert().values(data))
+
+
+    async def create_indexes(self) -> None:
+        """ Add indexes necessary for the frontend.
+        """
+        # reverse place node lookup needs an extra table to simulate a
+        # partial index with adaptive buffering.
+        await self.dest.execute(sa.text(
+            """ CREATE TABLE placex_place_node_areas AS
+                  SELECT place_id, ST_Expand(geometry,
+                                             14.0 * exp(-0.2 * rank_search) - 0.03) as geometry
+                  FROM placex
+                  WHERE rank_address between 5 and 25
+                        and osm_type = 'N'
+                        and linked_place_id is NULL """))
+        await self.dest.execute(sa.select(
+            sa.func.RecoverGeometryColumn('placex_place_node_areas', 'geometry',
+                                          4326, 'GEOMETRY', 'XY')))
+        await self.dest.execute(sa.select(sa.func.CreateSpatialIndex(
+                                             'placex_place_node_areas', 'geometry')))
+
+        # Remaining indexes.
+        await self.create_spatial_index('country_grid', 'geometry')
+        await self.create_spatial_index('placex', 'geometry')
+        await self.create_spatial_index('osmline', 'linegeo')
+        await self.create_spatial_index('tiger', 'linegeo')
+        await self.create_index('placex', 'place_id')
+        await self.create_index('placex', 'parent_place_id')
+        await self.create_index('placex', 'rank_address')
+        await self.create_index('addressline', 'place_id')
+        await self.create_index('postcode', 'place_id')
+        await self.create_index('osmline', 'place_id')
+        await self.create_index('tiger', 'place_id')
+
+        if 'search' in self.options:
+            await self.create_spatial_index('postcode', 'geometry')
+            await self.create_spatial_index('search_name', 'centroid')
+            await self.create_index('search_name', 'place_id')
+            await self.create_index('osmline', 'parent_place_id')
+            await self.create_index('tiger', 'parent_place_id')
+            await self.create_search_index()
+
+            for t in self.dest.t.meta.tables:
+                if t.startswith('place_classtype_'):
+                    await self.dest.execute(sa.select(
+                      sa.func.CreateSpatialIndex(t, 'centroid')))
+
+
+    async def create_spatial_index(self, table: str, column: str) -> None:
+        """ Create a spatial index on the given table and column.
+        """
+        await self.dest.execute(sa.select(
+                  sa.func.CreateSpatialIndex(getattr(self.dest.t, table).name, column)))
+
+
+    async def create_index(self, table_name: str, column: str) -> None:
+        """ Create a simple index on the given table and column.
+        """
+        table = getattr(self.dest.t, table_name)
+        await self.dest.connection.run_sync(
+            sa.Index(f"idx_{table}_{column}", getattr(table.c, column)).create)
+
+
+    async def create_search_index(self) -> None:
+        """ Create the tables and indexes needed for word lookup.
+        """
+        LOG.warning("Creating reverse search table")
+        rsn = sa.Table('reverse_search_name', self.dest.t.meta,
+                       sa.Column('word', sa.Integer()),
+                       sa.Column('column', sa.Text()),
+                       sa.Column('places', IntArray))
+        await self.dest.connection.run_sync(rsn.create)
+
+        tsrc = self.src.t.search_name
+        for column in ('name_vector', 'nameaddress_vector'):
+            sql = sa.select(sa.func.unnest(getattr(tsrc.c, column)).label('word'),
+                            sa.func.ArrayAgg(tsrc.c.place_id).label('places'))\
+                    .group_by('word')
+
+            async_result = await self.src.connection.stream(sql)
+            async for partition in async_result.partitions(100):
+                data = []
+                for row in partition:
+                    row.places.sort()
+                    data.append({'word': row.word,
+                                 'column': column,
+                                 'places': row.places})
+                await self.dest.execute(rsn.insert(), data)
+
+        await self.dest.connection.run_sync(
+            sa.Index('idx_reverse_search_name_word', rsn.c.word).create)
+
+
+    def select_from(self, table: str) -> SaSelect:
+        """ Create the SQL statement to select the source columns and rows.
+        """
+        columns = self.src.t.meta.tables[table].c
+
+        if table == 'placex':
+            # SQLite struggles with Geometries that are larger than 5MB,
+            # so simplify those.
+            return sa.select(*(c for c in columns if not isinstance(c.type, Geometry)),
+                             sa.func.ST_AsText(columns.centroid).label('centroid'),
+                             sa.func.ST_AsText(
+                               sa.case((sa.func.ST_MemSize(columns.geometry) < 5000000,
+                                        columns.geometry),
+                                       else_=sa.func.ST_SimplifyPreserveTopology(
+                                                columns.geometry, 0.0001)
+                                )).label('geometry'))
+
+        sql = sa.select(*(sa.func.ST_AsText(c).label(c.name)
+                             if isinstance(c.type, Geometry) else c for c in columns))
+
+        return sql