centroid GEOMETRY
);
- -- feature intersects geoemtry
- -- for areas and linestrings they must touch at least along a line
+-- feature intersects geoemtry
+-- for areas and linestrings they must touch at least along a line
CREATE OR REPLACE FUNCTION is_relevant_geometry(de9im TEXT, geom_type TEXT)
RETURNS BOOLEAN
AS $$
END
$$ LANGUAGE plpgsql IMMUTABLE;
-create or replace function getNearFeatures(in_partition INTEGER, feature GEOMETRY, maxrank INTEGER, isin_tokens INT[]) RETURNS setof nearfeaturecentr AS $$
+create or replace function getNearFeatures(in_partition INTEGER, feature GEOMETRY, maxrank INTEGER) RETURNS setof nearfeaturecentr AS $$
DECLARE
r nearfeaturecentr%rowtype;
BEGIN
-- start
IF in_partition = -partition- THEN
- FOR r IN
- SELECT place_id, keywords, rank_address, rank_search, min(ST_Distance(feature, centroid)) as distance, isguess, postcode, centroid
+ FOR r IN
+ SELECT place_id, keywords, rank_address, rank_search,
+ min(ST_Distance(feature, centroid)) as distance,
+ isguess, postcode, centroid
FROM location_area_large_-partition-
WHERE geometry && feature
AND is_relevant_geometry(ST_Relate(geometry, feature), ST_GeometryType(feature))
AND rank_address < maxrank
+ -- Postcodes currently still use rank_search to define for which
+ -- features they are relevant.
+ AND not (rank_address in (5, 11) and rank_search > maxrank)
GROUP BY place_id, keywords, rank_address, rank_search, isguess, postcode, centroid
- ORDER BY rank_address, isin_tokens && keywords desc, isguess asc,
- ST_Distance(feature, centroid) *
- CASE
- WHEN rank_address = 16 AND rank_search = 15 THEN 0.2 -- capital city
- WHEN rank_address = 16 AND rank_search = 16 THEN 0.25 -- city
- WHEN rank_address = 16 AND rank_search = 17 THEN 0.5 -- town
- ELSE 1 END ASC -- everything else
LOOP
RETURN NEXT r;
END LOOP;
$$
LANGUAGE plpgsql STABLE;
+CREATE OR REPLACE FUNCTION get_places_for_addr_tags(in_partition SMALLINT,
+ feature GEOMETRY,
+ address HSTORE, country TEXT)
+ RETURNS SETOF nearfeaturecentr
+ AS $$
+DECLARE
+ r nearfeaturecentr%rowtype;
+ item RECORD;
+BEGIN
+ FOR item IN
+ SELECT (get_addr_tag_rank(key, country)).*, key, name FROM
+ (SELECT skeys(address) as key, svals(address) as name) x
+ LOOP
+ IF item.from_rank is null THEN
+ CONTINUE;
+ END IF;
+
+-- start
+ IF in_partition = -partition- THEN
+ SELECT place_id, keywords, rank_address, rank_search,
+ min(ST_Distance(feature, centroid)) as distance,
+ isguess, postcode, centroid INTO r
+ FROM location_area_large_-partition-
+ WHERE geometry && ST_Expand(feature, item.extent)
+ AND rank_address between item.from_rank and item.to_rank
+ AND word_ids_from_name(item.name) && keywords
+ GROUP BY place_id, keywords, rank_address, rank_search, isguess, postcode, centroid
+ ORDER BY bool_or(ST_Intersects(geometry, feature)), distance LIMIT 1;
+ IF r.place_id is null THEN
+ -- If we cannot find a place for the term, just return the
+ -- search term for the given name. That ensures that the address
+ -- element can still be searched for, even though it will not be
+ -- displayed.
+ RETURN NEXT ROW(null, addr_ids_from_name(item.name), null, null,
+ null, null, null, null)::nearfeaturecentr;
+ ELSE
+ RETURN NEXT r;
+ END IF;
+ CONTINUE;
+ END IF;
+-- end
+
+ RAISE EXCEPTION 'Unknown partition %', in_partition;
+ END LOOP;
+END;
+$$
+LANGUAGE plpgsql STABLE;
+
create or replace function deleteLocationArea(in_partition INTEGER, in_place_id BIGINT, in_rank_search INTEGER) RETURNS BOOLEAN AS $$
DECLARE
BEGIN
INTO parent
WHERE name_vector && isin_token
AND centroid && ST_Expand(point, 0.015)
- AND search_rank between 26 and 27
+ AND address_rank between 26 and 27
ORDER BY ST_Distance(centroid, point) ASC limit 1;
RETURN parent;
END IF;
FROM search_name_-partition-
WHERE name_vector && isin_token
AND centroid && ST_Expand(point, 0.04)
- AND search_rank between 16 and 25
+ AND address_rank between 16 and 25
ORDER BY ST_Distance(centroid, point) ASC limit 1;
RETURN parent;
END IF;
$$
LANGUAGE plpgsql STABLE;
-
create or replace function insertSearchName(
in_partition INTEGER, in_place_id BIGINT, in_name_vector INTEGER[],
in_rank_search INTEGER, in_rank_address INTEGER, in_geometry GEOMETRY)
IF in_partition = -partition- THEN
DELETE FROM search_name_-partition- values WHERE place_id = in_place_id;
IF in_rank_address > 0 THEN
- INSERT INTO search_name_-partition- (place_id, search_rank, address_rank, name_vector, centroid)
- values (in_place_id, in_rank_search, in_rank_address, in_name_vector, in_geometry);
+ INSERT INTO search_name_-partition- (place_id, address_rank, name_vector, centroid)
+ values (in_place_id, in_rank_address, in_name_vector, in_geometry);
END IF;
RETURN TRUE;
END IF;