"""
from collections import Counter
import itertools
+import json
import logging
import re
from textwrap import dedent
from pathlib import Path
-import psycopg2.extras
-
from nominatim.db.connection import connect
from nominatim.db.properties import set_property, get_property
from nominatim.db.utils import CopyBuffer
self.max_word_frequency = get_property(conn, DBCFG_MAXWORDFREQ)
- def finalize_import(self, config):
+ def finalize_import(self, _):
""" Do any required postprocessing to make the tokenizer data ready
for use.
"""
- with connect(self.dsn) as conn:
- sqlp = SQLPreprocessor(conn, config)
- sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql')
def update_sql_functions(self, config):
"""
return LegacyICUNameAnalyzer(self.dsn, ICUNameProcessor(self.naming_rules))
- # pylint: disable=missing-format-attribute
+
def _install_php(self, phpdir):
""" Install the php script for the tokenizer.
"""
php_file = self.data_dir / "tokenizer.php"
- php_file.write_text(dedent("""\
+ php_file.write_text(dedent(f"""\
<?php
- @define('CONST_Max_Word_Frequency', {0.max_word_frequency});
- @define('CONST_Term_Normalization_Rules', "{0.term_normalization}");
- @define('CONST_Transliteration', "{0.naming_rules.search_rules}");
- require_once('{1}/tokenizer/legacy_icu_tokenizer.php');
- """.format(self, phpdir)))
+ @define('CONST_Max_Word_Frequency', {self.max_word_frequency});
+ @define('CONST_Term_Normalization_Rules', "{self.term_normalization}");
+ @define('CONST_Transliteration', "{self.naming_rules.search_rules}");
+ require_once('{phpdir}/tokenizer/legacy_icu_tokenizer.php');"""))
def _save_config(self, config):
"""
with connect(self.dsn) as conn:
sqlp = SQLPreprocessor(conn, config)
- sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_tables.sql')
+ sqlp.run_sql_file(conn, 'tokenizer/icu_tokenizer_tables.sql')
conn.commit()
LOG.warning("Precomputing word tokens")
# get partial words and their frequencies
- words = Counter()
- name_proc = ICUNameProcessor(self.naming_rules)
- with conn.cursor(name="words") as cur:
- cur.execute(""" SELECT v, count(*) FROM
- (SELECT svals(name) as v FROM place)x
- WHERE length(v) < 75 GROUP BY v""")
-
- for name, cnt in cur:
- terms = set()
- for word in name_proc.get_variants_ascii(name_proc.get_normalized(name)):
- if ' ' in word:
- terms.update(word.split())
- for term in terms:
- words[term] += cnt
+ words = self._count_partial_terms(conn)
# copy them back into the word table
with CopyBuffer() as copystr:
- for args in words.items():
- copystr.add(*args)
+ for term, cnt in words.items():
+ copystr.add('w', term, json.dumps({'count': cnt}))
with conn.cursor() as cur:
copystr.copy_out(cur, 'word',
- columns=['word_token', 'search_name_count'])
+ columns=['type', 'word_token', 'info'])
cur.execute("""UPDATE word SET word_id = nextval('seq_word')
- WHERE word_id is null""")
+ WHERE word_id is null and type = 'w'""")
conn.commit()
+ def _count_partial_terms(self, conn):
+ """ Count the partial terms from the names in the place table.
+ """
+ words = Counter()
+ name_proc = ICUNameProcessor(self.naming_rules)
+
+ with conn.cursor(name="words") as cur:
+ cur.execute(""" SELECT v, count(*) FROM
+ (SELECT svals(name) as v FROM place)x
+ WHERE length(v) < 75 GROUP BY v""")
+
+ for name, cnt in cur:
+ terms = set()
+ for word in name_proc.get_variants_ascii(name_proc.get_normalized(name)):
+ if ' ' in word:
+ terms.update(word.split())
+ for term in terms:
+ words[term] += cnt
+
+ return words
+
class LegacyICUNameAnalyzer:
""" The legacy analyzer uses the ICU library for splitting names.
The function is used for testing and debugging only
and not necessarily efficient.
"""
- tokens = {}
+ full_tokens = {}
+ partial_tokens = {}
for word in words:
if word.startswith('#'):
- tokens[word] = ' ' + self.name_processor.get_search_normalized(word[1:])
+ full_tokens[word] = self.name_processor.get_search_normalized(word[1:])
else:
- tokens[word] = self.name_processor.get_search_normalized(word)
+ partial_tokens[word] = self.name_processor.get_search_normalized(word)
with self.conn.cursor() as cur:
cur.execute("""SELECT word_token, word_id
- FROM word, (SELECT unnest(%s::TEXT[]) as term) t
- WHERE word_token = t.term
- and class is null and country_code is null""",
- (list(tokens.values()), ))
- ids = {r[0]: r[1] for r in cur}
+ FROM word WHERE word_token = ANY(%s) and type = 'W'
+ """, (list(full_tokens.values()),))
+ full_ids = {r[0]: r[1] for r in cur}
+ cur.execute("""SELECT word_token, word_id
+ FROM word WHERE word_token = ANY(%s) and type = 'w'""",
+ (list(partial_tokens.values()),))
+ part_ids = {r[0]: r[1] for r in cur}
- return [(k, v, ids.get(v, None)) for k, v in tokens.items()]
+ return [(k, v, full_ids.get(v, None)) for k, v in full_tokens.items()] \
+ + [(k, v, part_ids.get(v, None)) for k, v in partial_tokens.items()]
@staticmethod
(SELECT pc, word FROM
(SELECT distinct(postcode) as pc FROM location_postcode) p
FULL JOIN
- (SELECT word FROM word
- WHERE class ='place' and type = 'postcode') w
+ (SELECT word FROM word WHERE type = 'P') w
ON pc = word) x
WHERE pc is null or word is null""")
if postcode is None:
to_delete.append(word)
else:
- copystr.add(
- postcode,
- ' ' + self.name_processor.get_search_normalized(postcode),
- 'place', 'postcode', 0)
+ copystr.add(self.name_processor.get_search_normalized(postcode),
+ 'P', postcode)
if to_delete:
cur.execute("""DELETE FROM WORD
- WHERE class ='place' and type = 'postcode'
- and word = any(%s)
+ WHERE type ='P' and word = any(%s)
""", (to_delete, ))
copystr.copy_out(cur, 'word',
- columns=['word', 'word_token', 'class', 'type',
- 'search_name_count'])
+ columns=['word_token', 'type', 'word'])
def update_special_phrases(self, phrases, should_replace):
""" Replace the search index for special phrases with the new phrases.
+ If `should_replace` is True, then the previous set of will be
+ completely replaced. Otherwise the phrases are added to the
+ already existing ones.
"""
norm_phrases = set(((self.name_processor.get_normalized(p[0]), p[1], p[2], p[3])
for p in phrases))
with self.conn.cursor() as cur:
# Get the old phrases.
existing_phrases = set()
- cur.execute("""SELECT word, class, type, operator FROM word
- WHERE class != 'place'
- OR (type != 'house' AND type != 'postcode')""")
- for label, cls, typ, oper in cur:
- existing_phrases.add((label, cls, typ, oper or '-'))
+ cur.execute("SELECT word, info FROM word WHERE type = 'S'")
+ for word, info in cur:
+ existing_phrases.add((word, info['class'], info['type'],
+ info.get('op') or '-'))
added = self._add_special_phrases(cur, norm_phrases, existing_phrases)
if should_replace:
for word, cls, typ, oper in to_add:
term = self.name_processor.get_search_normalized(word)
if term:
- copystr.add(word, ' ' + term, cls, typ,
- oper if oper in ('in', 'near') else None, 0)
+ copystr.add(term, 'S', word,
+ json.dumps({'class': cls, 'type': typ,
+ 'op': oper if oper in ('in', 'near') else None}))
added += 1
copystr.copy_out(cursor, 'word',
- columns=['word', 'word_token', 'class', 'type',
- 'operator', 'search_name_count'])
+ columns=['word_token', 'type', 'word', 'info'])
return added
to_delete = existing_phrases - new_phrases
if to_delete:
- psycopg2.extras.execute_values(
- cursor,
+ cursor.execute_values(
""" DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op)
- WHERE word = name and class = in_class and type = in_type
- and ((op = '-' and operator is null) or op = operator)""",
- to_delete)
+ WHERE type = 'S' and word = name
+ and info->>'class' = in_class and info->>'type' = in_type
+ and ((op = '-' and info->>'op' is null) or op = info->>'op')
+ """, to_delete)
return len(to_delete)
"""
word_tokens = set()
for name in self._compute_full_names(names):
- if name:
- word_tokens.add(' ' + self.name_processor.get_search_normalized(name))
+ norm_name = self.name_processor.get_search_normalized(name)
+ if norm_name:
+ word_tokens.add(norm_name)
with self.conn.cursor() as cur:
# Get existing names
- cur.execute("SELECT word_token FROM word WHERE country_code = %s",
+ cur.execute("""SELECT word_token FROM word
+ WHERE type = 'C' and word = %s""",
(country_code, ))
word_tokens.difference_update((t[0] for t in cur))
+ # Only add those names that are not yet in the list.
if word_tokens:
- cur.execute("""INSERT INTO word (word_id, word_token, country_code,
- search_name_count)
- (SELECT nextval('seq_word'), token, '{}', 0
+ cur.execute("""INSERT INTO word (word_token, type, word)
+ (SELECT token, 'C', %s
FROM unnest(%s) as token)
- """.format(country_code), (list(word_tokens),))
+ """, (country_code, list(word_tokens)))
+
+ # No names are deleted at the moment.
+ # If deletion is made possible, then the static names from the
+ # initial 'country_name' table should be kept.
def process_place(self, place):
self.add_country_names(country_feature.lower(), names)
address = place.get('address')
-
if address:
- hnrs = []
- addr_terms = []
- for key, value in address.items():
- if key == 'postcode':
- self._add_postcode(value)
- elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'):
- hnrs.append(value)
- elif key == 'street':
- token_info.add_street(*self._compute_name_tokens({'name': value}))
- elif key == 'place':
- token_info.add_place(*self._compute_name_tokens({'name': value}))
- elif not key.startswith('_') and \
- key not in ('country', 'full'):
- addr_terms.append((key, *self._compute_name_tokens({'name': value})))
-
- if hnrs:
- hnrs = self._split_housenumbers(hnrs)
- token_info.add_housenumbers(self.conn, [self._make_standard_hnr(n) for n in hnrs])
-
- if addr_terms:
- token_info.add_address_terms(addr_terms)
+ self._process_place_address(token_info, address)
return token_info.data
+ def _process_place_address(self, token_info, address):
+ hnrs = []
+ addr_terms = []
+ for key, value in address.items():
+ if key == 'postcode':
+ self._add_postcode(value)
+ elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'):
+ hnrs.append(value)
+ elif key == 'street':
+ token_info.add_street(*self._compute_name_tokens({'name': value}))
+ elif key == 'place':
+ token_info.add_place(*self._compute_name_tokens({'name': value}))
+ elif not key.startswith('_') and \
+ key not in ('country', 'full'):
+ addr_terms.append((key, *self._compute_name_tokens({'name': value})))
+
+ if hnrs:
+ hnrs = self._split_housenumbers(hnrs)
+ token_info.add_housenumbers(self.conn, [self._make_standard_hnr(n) for n in hnrs])
+
+ if addr_terms:
+ token_info.add_address_terms(addr_terms)
+
+
def _compute_name_tokens(self, names):
""" Computes the full name and partial name tokens for the given
dictionary of names.
with self.conn.cursor() as cur:
# no word_id needed for postcodes
- cur.execute("""INSERT INTO word (word, word_token, class, type,
- search_name_count)
- (SELECT pc, %s, 'place', 'postcode', 0
- FROM (VALUES (%s)) as v(pc)
+ cur.execute("""INSERT INTO word (word_token, type, word)
+ (SELECT %s, 'P', pc FROM (VALUES (%s)) as v(pc)
WHERE NOT EXISTS
(SELECT * FROM word
- WHERE word = pc and class='place' and type='postcode'))
- """, (' ' + term, postcode))
+ WHERE type = 'P' and word = pc))
+ """, (term, postcode))
self._cache.postcodes.add(postcode)
def get_hnr_tokens(self, conn, terms):
""" Get token ids for a list of housenumbers, looking them up in the
- database if necessary.
+ database if necessary. `terms` is an iterable of normalized
+ housenumbers.
"""
tokens = []
askdb = []