]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/db_search_builder.py
remove unused code
[nominatim.git] / nominatim / api / search / db_search_builder.py
index 9d89736c9b63e6e3c88d64d2f97e87c6001a92fd..66e7efaf7f729dec8fdc8f0f889295b6ed8a6f67 100644 (file)
@@ -11,11 +11,10 @@ from typing import Optional, List, Tuple, Iterator
 import heapq
 
 from nominatim.api.types import SearchDetails, DataLayer
-from nominatim.api.search.query import QueryStruct, TokenType, TokenRange, BreakType
+from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
 from nominatim.api.search.token_assignment import TokenAssignment
 import nominatim.api.search.db_search_fields as dbf
 import nominatim.api.search.db_searches as dbs
-from nominatim.api.logging import log
 
 
 def wrap_near_search(categories: List[Tuple[str, str]],
@@ -97,6 +96,10 @@ class SearchBuilder:
                 sdata.qualifiers = categories
                 categories = None
                 builder = self.build_poi_search(sdata)
+            elif assignment.housenumber:
+                hnr_tokens = self.query.get_tokens(assignment.housenumber,
+                                                   TokenType.HOUSENUMBER)
+                builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
             else:
                 builder = self.build_special_search(sdata, assignment.address,
                                                     bool(categories))
@@ -108,9 +111,11 @@ class SearchBuilder:
             penalty = min(categories.penalties)
             categories.penalties = [p - penalty for p in categories.penalties]
             for search in builder:
-                yield dbs.NearSearch(penalty, categories, search)
+                yield dbs.NearSearch(penalty + assignment.penalty, categories, search)
         else:
-            yield from builder
+            for search in builder:
+                search.penalty += assignment.penalty
+                yield search
 
 
     def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
@@ -128,8 +133,8 @@ class SearchBuilder:
         """ Build abstract search queries for searches that do not involve
             a named place.
         """
-        if sdata.qualifiers or sdata.housenumbers:
-            # No special searches over housenumbers or qualifiers supported.
+        if sdata.qualifiers:
+            # No special searches over qualifiers supported.
             return
 
         if sdata.countries and not address and not sdata.postcodes \
@@ -137,12 +142,38 @@ class SearchBuilder:
             yield dbs.CountrySearch(sdata)
 
         if sdata.postcodes and (is_category or self.configured_for_postcode):
+            penalty = 0.0 if sdata.countries else 0.1
             if address:
                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
                                                  [t.token for r in address
                                                   for t in self.query.get_partials_list(r)],
                                                  'restrict')]
-            yield dbs.PostcodeSearch(0.4, sdata)
+                penalty += 0.2
+            yield dbs.PostcodeSearch(penalty, sdata)
+
+
+    def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
+                                 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
+        """ Build a simple address search for special entries where the
+            housenumber is the main name token.
+        """
+        sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
+
+        partials = [t for trange in address
+                       for t in self.query.get_partials_list(trange)]
+
+        if len(partials) != 1 or partials[0].count < 10000:
+            sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
+                                                 [t.token for t in partials], 'lookup_all'))
+        else:
+            sdata.lookups.append(
+                dbf.FieldLookup('nameaddress_vector',
+                                [t.token for t
+                                 in self.query.get_tokens(address[0], TokenType.WORD)],
+                                'lookup_any'))
+
+        sdata.housenumbers = dbf.WeightedStrings([], [])
+        yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
 
 
     def build_name_search(self, sdata: dbf.SearchData,
@@ -166,65 +197,43 @@ class SearchBuilder:
             be searched for. This takes into account how frequent the terms
             are and tries to find a lookup that optimizes index use.
         """
-        penalty = 0.0 # extra penalty currently unused
-
+        penalty = 0.0 # extra penalty
         name_partials = self.query.get_partials_list(name)
-        exp_name_count = min(t.count for t in name_partials)
-        addr_partials = []
-        for trange in address:
-            addr_partials.extend(self.query.get_partials_list(trange))
+        name_tokens = [t.token for t in name_partials]
+
+        addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
         addr_tokens = [t.token for t in addr_partials]
+
         partials_indexed = all(t.is_indexed for t in name_partials) \
                            and all(t.is_indexed for t in addr_partials)
+        exp_count = min(t.count for t in name_partials) / (2**(len(name_partials) - 1))
 
-        if (len(name_partials) > 3 or exp_name_count < 1000) and partials_indexed:
-            # Lookup by name partials, use address partials to restrict results.
-            lookup = [dbf.FieldLookup('name_vector',
-                                  [t.token for t in name_partials], 'lookup_all')]
-            if addr_tokens:
-                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
-            yield penalty, exp_name_count, lookup
-            return
-
-        exp_addr_count = min(t.count for t in addr_partials) if addr_partials else exp_name_count
-        if exp_addr_count < 1000 and partials_indexed:
-            # Lookup by address partials and restrict results through name terms.
-            yield penalty, exp_addr_count,\
-                  [dbf.FieldLookup('name_vector', [t.token for t in name_partials], 'restrict'),
-                   dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all')]
+        if (len(name_partials) > 3 or exp_count < 3000) and partials_indexed:
+            yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
             return
 
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
-        rare_names = list(filter(lambda t: t.count < 1000, name_fulls))
+        fulls_count = sum(t.count for t in name_fulls)
         # At this point drop unindexed partials from the address.
         # This might yield wrong results, nothing we can do about that.
         if not partials_indexed:
             addr_tokens = [t.token for t in addr_partials if t.is_indexed]
-            log().var_dump('before', penalty)
             penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
-            log().var_dump('after', penalty)
-        if rare_names:
-            # Any of the full names applies with all of the partials from the address
-            lookup = [dbf.FieldLookup('name_vector', [t.token for t in rare_names], 'lookup_any')]
-            if addr_tokens:
-                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
-            yield penalty, sum(t.count for t in rare_names), lookup
+        # Any of the full names applies with all of the partials from the address
+        yield penalty, fulls_count / (2**len(addr_partials)),\
+              dbf.lookup_by_any_name([t.token for t in name_fulls], addr_tokens,
+                                     'restrict' if fulls_count < 10000 else 'lookup_all')
 
         # To catch remaining results, lookup by name and address
-        if all(t.is_indexed for t in name_partials):
-            lookup = [dbf.FieldLookup('name_vector',
-                                      [t.token for t in name_partials], 'lookup_all')]
-        else:
-            # we don't have the partials, try with the non-rare names
-            non_rare_names = [t.token for t in name_fulls if t.count >= 1000]
-            if not non_rare_names:
-                return
-            lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
-        if addr_tokens:
-            lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
-        yield penalty + 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens)),\
-              min(exp_name_count, exp_addr_count), lookup
+        # We only do this if there is a reasonable number of results expected.
+        exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
+        if exp_count < 10000 and all(t.is_indexed for t in name_partials):
+            lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
+            if addr_tokens:
+                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
+            penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
+            yield penalty, exp_count, lookup
 
 
     def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking: