]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/icu_tokenizer.py
Merge pull request #3211 from lonvia/replace-get-addressdata
[nominatim.git] / nominatim / api / search / icu_tokenizer.py
index 9bd16e1d85350de6d9879bd95af1c2d809f047b1..b68e8d10eef70816f6cb772da2d7036e8a31693d 100644 (file)
@@ -83,7 +83,7 @@ class ICUToken(qmod.Token):
         seq = difflib.SequenceMatcher(a=self.lookup_word, b=norm)
         distance = 0
         for tag, afrom, ato, bfrom, bto in seq.get_opcodes():
         seq = difflib.SequenceMatcher(a=self.lookup_word, b=norm)
         distance = 0
         for tag, afrom, ato, bfrom, bto in seq.get_opcodes():
-            if tag == 'delete' and (afrom == 0 or ato == len(self.lookup_word)):
+            if tag in ('delete', 'insert') and (afrom == 0 or ato == len(self.lookup_word)):
                 distance += 1
             elif tag == 'replace':
                 distance += max((ato-afrom), (bto-bfrom))
                 distance += 1
             elif tag == 'replace':
                 distance += max((ato-afrom), (bto-bfrom))
@@ -133,10 +133,19 @@ class ICUQueryAnalyzer(AbstractQueryAnalyzer):
     async def setup(self) -> None:
         """ Set up static data structures needed for the analysis.
         """
     async def setup(self) -> None:
         """ Set up static data structures needed for the analysis.
         """
-        rules = await self.conn.get_property('tokenizer_import_normalisation')
-        self.normalizer = Transliterator.createFromRules("normalization", rules)
-        rules = await self.conn.get_property('tokenizer_import_transliteration')
-        self.transliterator = Transliterator.createFromRules("transliteration", rules)
+        async def _make_normalizer() -> Any:
+            rules = await self.conn.get_property('tokenizer_import_normalisation')
+            return Transliterator.createFromRules("normalization", rules)
+
+        self.normalizer = await self.conn.get_cached_value('ICUTOK', 'normalizer',
+                                                           _make_normalizer)
+
+        async def _make_transliterator() -> Any:
+            rules = await self.conn.get_property('tokenizer_import_transliteration')
+            return Transliterator.createFromRules("transliteration", rules)
+
+        self.transliterator = await self.conn.get_cached_value('ICUTOK', 'transliterator',
+                                                               _make_transliterator)
 
         if 'word' not in self.conn.t.meta.tables:
             sa.Table('word', self.conn.t.meta,
 
         if 'word' not in self.conn.t.meta.tables:
             sa.Table('word', self.conn.t.meta,
@@ -153,7 +162,7 @@ class ICUQueryAnalyzer(AbstractQueryAnalyzer):
         """
         log().section('Analyze query (using ICU tokenizer)')
         normalized = list(filter(lambda p: p.text,
         """
         log().section('Analyze query (using ICU tokenizer)')
         normalized = list(filter(lambda p: p.text,
-                                 (qmod.Phrase(p.ptype, self.normalizer.transliterate(p.text))
+                                 (qmod.Phrase(p.ptype, self.normalize_text(p.text))
                                   for p in phrases)))
         query = qmod.QueryStruct(normalized)
         log().var_dump('Normalized query', query.source)
                                   for p in phrases)))
         query = qmod.QueryStruct(normalized)
         log().var_dump('Normalized query', query.source)
@@ -187,6 +196,14 @@ class ICUQueryAnalyzer(AbstractQueryAnalyzer):
         return query
 
 
         return query
 
 
+    def normalize_text(self, text: str) -> str:
+        """ Bring the given text into a normalized form. That is the
+            standardized form search will work with. All information removed
+            at this stage is inevitably lost.
+        """
+        return cast(str, self.normalizer.transliterate(text))
+
+
     def split_query(self, query: qmod.QueryStruct) -> Tuple[QueryParts, WordDict]:
         """ Transliterate the phrases and split them into tokens.
 
     def split_query(self, query: qmod.QueryStruct) -> Tuple[QueryParts, WordDict]:
         """ Transliterate the phrases and split them into tokens.