]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/db_search_builder.py
Merge remote-tracking branch 'upstream/master'
[nominatim.git] / nominatim / api / search / db_search_builder.py
index ef7a66b8507387630c6d0aacc5bfb2b67a08b566..e27a24d61eb54f0d7bb1bc04abedc90703dacc8a 100644 (file)
@@ -166,7 +166,7 @@ class SearchBuilder:
         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
         expected_count = sum(t.count for t in hnrs)
 
-        partials = {t.token: t.count for trange in address
+        partials = {t.token: t.addr_count for trange in address
                        for t in self.query.get_partials_list(trange)}
 
         if expected_count < 8000:
@@ -222,31 +222,81 @@ class SearchBuilder:
             yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
             return
 
+        addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 30000
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
         if name_fulls:
             fulls_count = sum(t.count for t in name_fulls)
-            # At this point drop unindexed partials from the address.
-            # This might yield wrong results, nothing we can do about that.
-            if not partials_indexed:
-                addr_tokens = [t.token for t in addr_partials if t.is_indexed]
+            if len(name_partials) == 1:
+                penalty += min(0.5, max(0, (exp_count - 50 * fulls_count) / (2000 * fulls_count)))
+            if partials_indexed:
                 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
-            # Any of the full names applies with all of the partials from the address
-            yield penalty, fulls_count / (2**len(addr_tokens)),\
-                  dbf.lookup_by_any_name([t.token for t in name_fulls],
-                                         addr_tokens,
-                                         fulls_count > 30000 / max(1, len(addr_tokens)))
+
+            if fulls_count < 50000 or addr_count < 30000:
+                yield penalty,fulls_count / (2**len(addr_tokens)), \
+                    self.get_full_name_ranking(name_fulls, addr_partials,
+                                               fulls_count > 30000 / max(1, len(addr_tokens)))
 
         # To catch remaining results, lookup by name and address
         # We only do this if there is a reasonable number of results expected.
         exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
-        if exp_count < 10000 and all(t.is_indexed for t in name_partials.values()):
-            lookup = [dbf.FieldLookup('name_vector', list(name_partials.keys()), lookups.LookupAll)]
-            if addr_tokens:
-                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
+        if exp_count < 10000 and addr_count < 20000\
+           and all(t.is_indexed for t in name_partials.values()):
             penalty += 0.35 * max(1 if name_fulls else 0.1,
                                   5 - len(name_partials) - len(addr_tokens))
-            yield penalty, exp_count, lookup
+            yield penalty, exp_count,\
+                  self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
+
+
+    def get_name_address_ranking(self, name_tokens: List[int],
+                                 addr_partials: List[Token]) -> List[dbf.FieldLookup]:
+        """ Create a ranking expression looking up by name and address.
+        """
+        lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
+
+        addr_restrict_tokens = []
+        addr_lookup_tokens = []
+        for t in addr_partials:
+            if t.is_indexed:
+                if t.addr_count > 20000:
+                    addr_restrict_tokens.append(t.token)
+                else:
+                    addr_lookup_tokens.append(t.token)
+
+        if addr_restrict_tokens:
+            lookup.append(dbf.FieldLookup('nameaddress_vector',
+                                          addr_restrict_tokens, lookups.Restrict))
+        if addr_lookup_tokens:
+            lookup.append(dbf.FieldLookup('nameaddress_vector',
+                                          addr_lookup_tokens, lookups.LookupAll))
+
+        return lookup
+
+
+    def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
+                              use_lookup: bool) -> List[dbf.FieldLookup]:
+        """ Create a ranking expression with full name terms and
+            additional address lookup. When 'use_lookup' is true, then
+            address lookups will use the index, when the occurences are not
+            too many.
+        """
+        # At this point drop unindexed partials from the address.
+        # This might yield wrong results, nothing we can do about that.
+        if use_lookup:
+            addr_restrict_tokens = []
+            addr_lookup_tokens = []
+            for t in addr_partials:
+                if t.is_indexed:
+                    if t.addr_count > 20000:
+                        addr_restrict_tokens.append(t.token)
+                    else:
+                        addr_lookup_tokens.append(t.token)
+        else:
+            addr_restrict_tokens = [t.token for t in addr_partials if t.is_indexed]
+            addr_lookup_tokens = []
+
+        return dbf.lookup_by_any_name([t.token for t in name_fulls],
+                                      addr_restrict_tokens, addr_lookup_tokens)
 
 
     def get_name_ranking(self, trange: TokenRange,