]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/db_searches.py
PHP related FAQ entries are no longer needed
[nominatim.git] / nominatim / api / search / db_searches.py
index f0d75ad1f301fa5ceee5127f6035445f9c8ecdf3..555819e7451dac76042482cd101ffbdfd067c882 100644 (file)
 """
 Implementation of the acutal database accesses for forward search.
 """
+from typing import List, Tuple, AsyncIterator, Dict, Any, Callable, cast
 import abc
 
+import sqlalchemy as sa
+
+from nominatim.typing import SaFromClause, SaScalarSelect, SaColumn, \
+                             SaExpression, SaSelect, SaLambdaSelect, SaRow, SaBind
 from nominatim.api.connection import SearchConnection
-from nominatim.api.types import SearchDetails
+from nominatim.api.types import SearchDetails, DataLayer, GeometryFormat, Bbox
 import nominatim.api.results as nres
 from nominatim.api.search.db_search_fields import SearchData, WeightedCategories
+from nominatim.db.sqlalchemy_types import Geometry, IntArray
+
+#pylint: disable=singleton-comparison,not-callable
+#pylint: disable=too-many-branches,too-many-arguments,too-many-locals,too-many-statements
+
+def no_index(expr: SaColumn) -> SaColumn:
+    """ Wrap the given expression, so that the query planner will
+        refrain from using the expression for index lookup.
+    """
+    return sa.func.coalesce(sa.null(), expr) # pylint: disable=not-callable
+
+
+def _details_to_bind_params(details: SearchDetails) -> Dict[str, Any]:
+    """ Create a dictionary from search parameters that can be used
+        as bind parameter for SQL execute.
+    """
+    return {'limit': details.max_results,
+            'min_rank': details.min_rank,
+            'max_rank': details.max_rank,
+            'viewbox': details.viewbox,
+            'viewbox2': details.viewbox_x2,
+            'near': details.near,
+            'near_radius': details.near_radius,
+            'excluded': details.excluded,
+            'countries': details.countries}
+
+
+LIMIT_PARAM: SaBind = sa.bindparam('limit')
+MIN_RANK_PARAM: SaBind = sa.bindparam('min_rank')
+MAX_RANK_PARAM: SaBind = sa.bindparam('max_rank')
+VIEWBOX_PARAM: SaBind = sa.bindparam('viewbox', type_=Geometry)
+VIEWBOX2_PARAM: SaBind = sa.bindparam('viewbox2', type_=Geometry)
+NEAR_PARAM: SaBind = sa.bindparam('near', type_=Geometry)
+NEAR_RADIUS_PARAM: SaBind = sa.bindparam('near_radius')
+COUNTRIES_PARAM: SaBind = sa.bindparam('countries')
+
+
+def filter_by_area(sql: SaSelect, t: SaFromClause,
+                   details: SearchDetails, avoid_index: bool = False) -> SaSelect:
+    """ Apply SQL statements for filtering by viewbox and near point,
+        if applicable.
+    """
+    if details.near is not None and details.near_radius is not None:
+        if details.near_radius < 0.1 and not avoid_index:
+            sql = sql.where(t.c.geometry.within_distance(NEAR_PARAM, NEAR_RADIUS_PARAM))
+        else:
+            sql = sql.where(t.c.geometry.ST_Distance(NEAR_PARAM) <= NEAR_RADIUS_PARAM)
+    if details.viewbox is not None and details.bounded_viewbox:
+        sql = sql.where(t.c.geometry.intersects(VIEWBOX_PARAM,
+                                                use_index=not avoid_index and
+                                                          details.viewbox.area < 0.2))
+
+    return sql
+
+
+def _exclude_places(t: SaFromClause) -> Callable[[], SaExpression]:
+    return lambda: t.c.place_id.not_in(sa.bindparam('excluded'))
+
+
+def _select_placex(t: SaFromClause) -> SaSelect:
+    return sa.select(t.c.place_id, t.c.osm_type, t.c.osm_id, t.c.name,
+                     t.c.class_, t.c.type,
+                     t.c.address, t.c.extratags,
+                     t.c.housenumber, t.c.postcode, t.c.country_code,
+                     t.c.wikipedia,
+                     t.c.parent_place_id, t.c.rank_address, t.c.rank_search,
+                     t.c.linked_place_id, t.c.admin_level,
+                     t.c.centroid,
+                     t.c.geometry.ST_Expand(0).label('bbox'))
+
+
+def _add_geometry_columns(sql: SaLambdaSelect, col: SaColumn, details: SearchDetails) -> SaSelect:
+    out = []
+
+    if details.geometry_simplification > 0.0:
+        col = sa.func.ST_SimplifyPreserveTopology(col, details.geometry_simplification)
+
+    if details.geometry_output & GeometryFormat.GEOJSON:
+        out.append(sa.func.ST_AsGeoJSON(col, 7).label('geometry_geojson'))
+    if details.geometry_output & GeometryFormat.TEXT:
+        out.append(sa.func.ST_AsText(col).label('geometry_text'))
+    if details.geometry_output & GeometryFormat.KML:
+        out.append(sa.func.ST_AsKML(col, 7).label('geometry_kml'))
+    if details.geometry_output & GeometryFormat.SVG:
+        out.append(sa.func.ST_AsSVG(col, 0, 7).label('geometry_svg'))
+
+    return sql.add_columns(*out)
+
+
+def _make_interpolation_subquery(table: SaFromClause, inner: SaFromClause,
+                                 numerals: List[int], details: SearchDetails) -> SaScalarSelect:
+    all_ids = sa.func.ArrayAgg(table.c.place_id)
+    sql = sa.select(all_ids).where(table.c.parent_place_id == inner.c.place_id)
+
+    if len(numerals) == 1:
+        sql = sql.where(sa.between(numerals[0], table.c.startnumber, table.c.endnumber))\
+                 .where((numerals[0] - table.c.startnumber) % table.c.step == 0)
+    else:
+        sql = sql.where(sa.or_(
+                *(sa.and_(sa.between(n, table.c.startnumber, table.c.endnumber),
+                          (n - table.c.startnumber) % table.c.step == 0)
+                  for n in numerals)))
+
+    if details.excluded:
+        sql = sql.where(_exclude_places(table))
+
+    return sql.scalar_subquery()
+
+
+def _filter_by_layer(table: SaFromClause, layers: DataLayer) -> SaColumn:
+    orexpr: List[SaExpression] = []
+    if layers & DataLayer.ADDRESS and layers & DataLayer.POI:
+        orexpr.append(no_index(table.c.rank_address).between(1, 30))
+    elif layers & DataLayer.ADDRESS:
+        orexpr.append(no_index(table.c.rank_address).between(1, 29))
+        orexpr.append(sa.func.IsAddressPoint(table))
+    elif layers & DataLayer.POI:
+        orexpr.append(sa.and_(no_index(table.c.rank_address) == 30,
+                              table.c.class_.not_in(('place', 'building'))))
+
+    if layers & DataLayer.MANMADE:
+        exclude = []
+        if not layers & DataLayer.RAILWAY:
+            exclude.append('railway')
+        if not layers & DataLayer.NATURAL:
+            exclude.extend(('natural', 'water', 'waterway'))
+        orexpr.append(sa.and_(table.c.class_.not_in(tuple(exclude)),
+                              no_index(table.c.rank_address) == 0))
+    else:
+        include = []
+        if layers & DataLayer.RAILWAY:
+            include.append('railway')
+        if layers & DataLayer.NATURAL:
+            include.extend(('natural', 'water', 'waterway'))
+        orexpr.append(sa.and_(table.c.class_.in_(tuple(include)),
+                              no_index(table.c.rank_address) == 0))
+
+    if len(orexpr) == 1:
+        return orexpr[0]
+
+    return sa.or_(*orexpr)
+
+
+def _interpolated_position(table: SaFromClause, nr: SaColumn) -> SaColumn:
+    pos = sa.cast(nr - table.c.startnumber, sa.Float) / (table.c.endnumber - table.c.startnumber)
+    return sa.case(
+            (table.c.endnumber == table.c.startnumber, table.c.linegeo.ST_Centroid()),
+            else_=table.c.linegeo.ST_LineInterpolatePoint(pos)).label('centroid')
+
+
+async def _get_placex_housenumbers(conn: SearchConnection,
+                                   place_ids: List[int],
+                                   details: SearchDetails) -> AsyncIterator[nres.SearchResult]:
+    t = conn.t.placex
+    sql = _select_placex(t).add_columns(t.c.importance)\
+                           .where(t.c.place_id.in_(place_ids))
+
+    if details.geometry_output:
+        sql = _add_geometry_columns(sql, t.c.geometry, details)
+
+    for row in await conn.execute(sql):
+        result = nres.create_from_placex_row(row, nres.SearchResult)
+        assert result
+        result.bbox = Bbox.from_wkb(row.bbox)
+        yield result
+
+
+def _int_list_to_subquery(inp: List[int]) -> 'sa.Subquery':
+    """ Create a subselect that returns the given list of integers
+        as rows in the column 'nr'.
+    """
+    vtab = sa.func.JsonArrayEach(sa.type_coerce(inp, sa.JSON))\
+               .table_valued(sa.column('value', type_=sa.JSON))
+    return sa.select(sa.cast(sa.cast(vtab.c.value, sa.Text), sa.Integer).label('nr')).subquery()
+
+
+async def _get_osmline(conn: SearchConnection, place_ids: List[int],
+                       numerals: List[int],
+                       details: SearchDetails) -> AsyncIterator[nres.SearchResult]:
+    t = conn.t.osmline
+
+    values = _int_list_to_subquery(numerals)
+    sql = sa.select(t.c.place_id, t.c.osm_id,
+                    t.c.parent_place_id, t.c.address,
+                    values.c.nr.label('housenumber'),
+                    _interpolated_position(t, values.c.nr),
+                    t.c.postcode, t.c.country_code)\
+            .where(t.c.place_id.in_(place_ids))\
+            .join(values, values.c.nr.between(t.c.startnumber, t.c.endnumber))
+
+    if details.geometry_output:
+        sub = sql.subquery()
+        sql = _add_geometry_columns(sa.select(sub), sub.c.centroid, details)
+
+    for row in await conn.execute(sql):
+        result = nres.create_from_osmline_row(row, nres.SearchResult)
+        assert result
+        yield result
+
+
+async def _get_tiger(conn: SearchConnection, place_ids: List[int],
+                     numerals: List[int], osm_id: int,
+                     details: SearchDetails) -> AsyncIterator[nres.SearchResult]:
+    t = conn.t.tiger
+    values = _int_list_to_subquery(numerals)
+    sql = sa.select(t.c.place_id, t.c.parent_place_id,
+                    sa.literal('W').label('osm_type'),
+                    sa.literal(osm_id).label('osm_id'),
+                    values.c.nr.label('housenumber'),
+                    _interpolated_position(t, values.c.nr),
+                    t.c.postcode)\
+            .where(t.c.place_id.in_(place_ids))\
+            .join(values, values.c.nr.between(t.c.startnumber, t.c.endnumber))
+
+    if details.geometry_output:
+        sub = sql.subquery()
+        sql = _add_geometry_columns(sa.select(sub), sub.c.centroid, details)
+
+    for row in await conn.execute(sql):
+        result = nres.create_from_tiger_row(row, nres.SearchResult)
+        assert result
+        yield result
+
 
 class AbstractSearch(abc.ABC):
     """ Encapuslation of a single lookup in the database.
     """
+    SEARCH_PRIO: int = 2
 
     def __init__(self, penalty: float) -> None:
         self.penalty = penalty
@@ -42,7 +271,97 @@ class NearSearch(AbstractSearch):
                      details: SearchDetails) -> nres.SearchResults:
         """ Find results for the search in the database.
         """
-        return nres.SearchResults([])
+        results = nres.SearchResults()
+        base = await self.search.lookup(conn, details)
+
+        if not base:
+            return results
+
+        base.sort(key=lambda r: (r.accuracy, r.rank_search))
+        max_accuracy = base[0].accuracy + 0.5
+        if base[0].rank_address == 0:
+            min_rank = 0
+            max_rank = 0
+        elif base[0].rank_address < 26:
+            min_rank = 1
+            max_rank = min(25, base[0].rank_address + 4)
+        else:
+            min_rank = 26
+            max_rank = 30
+        base = nres.SearchResults(r for r in base if r.source_table == nres.SourceTable.PLACEX
+                                                     and r.accuracy <= max_accuracy
+                                                     and r.bbox and r.bbox.area < 20
+                                                     and r.rank_address >= min_rank
+                                                     and r.rank_address <= max_rank)
+
+        if base:
+            baseids = [b.place_id for b in base[:5] if b.place_id]
+
+            for category, penalty in self.categories:
+                await self.lookup_category(results, conn, baseids, category, penalty, details)
+                if len(results) >= details.max_results:
+                    break
+
+        return results
+
+
+    async def lookup_category(self, results: nres.SearchResults,
+                              conn: SearchConnection, ids: List[int],
+                              category: Tuple[str, str], penalty: float,
+                              details: SearchDetails) -> None:
+        """ Find places of the given category near the list of
+            place ids and add the results to 'results'.
+        """
+        table = await conn.get_class_table(*category)
+
+        tgeom = conn.t.placex.alias('pgeom')
+
+        if table is None:
+            # No classtype table available, do a simplified lookup in placex.
+            table = conn.t.placex
+            sql = sa.select(table.c.place_id,
+                            sa.func.min(tgeom.c.centroid.ST_Distance(table.c.centroid))
+                              .label('dist'))\
+                    .join(tgeom, table.c.geometry.intersects(tgeom.c.centroid.ST_Expand(0.01)))\
+                    .where(table.c.class_ == category[0])\
+                    .where(table.c.type == category[1])
+        else:
+            # Use classtype table. We can afford to use a larger
+            # radius for the lookup.
+            sql = sa.select(table.c.place_id,
+                            sa.func.min(tgeom.c.centroid.ST_Distance(table.c.centroid))
+                              .label('dist'))\
+                    .join(tgeom,
+                          table.c.centroid.ST_CoveredBy(
+                              sa.case((sa.and_(tgeom.c.rank_address > 9,
+                                                tgeom.c.geometry.is_area()),
+                                       tgeom.c.geometry),
+                                      else_ = tgeom.c.centroid.ST_Expand(0.05))))
+
+        inner = sql.where(tgeom.c.place_id.in_(ids))\
+                   .group_by(table.c.place_id).subquery()
+
+        t = conn.t.placex
+        sql = _select_placex(t).add_columns((-inner.c.dist).label('importance'))\
+                               .join(inner, inner.c.place_id == t.c.place_id)\
+                               .order_by(inner.c.dist)
+
+        sql = sql.where(no_index(t.c.rank_address).between(MIN_RANK_PARAM, MAX_RANK_PARAM))
+        if details.countries:
+            sql = sql.where(t.c.country_code.in_(COUNTRIES_PARAM))
+        if details.excluded:
+            sql = sql.where(_exclude_places(t))
+        if details.layers is not None:
+            sql = sql.where(_filter_by_layer(t, details.layers))
+
+        sql = sql.limit(LIMIT_PARAM)
+        for row in await conn.execute(sql, _details_to_bind_params(details)):
+            result = nres.create_from_placex_row(row, nres.SearchResult)
+            assert result
+            result.accuracy = self.penalty + penalty
+            result.bbox = Bbox.from_wkb(row.bbox)
+            results.append(result)
+
 
 
 class PoiSearch(AbstractSearch):
@@ -50,7 +369,7 @@ class PoiSearch(AbstractSearch):
     """
     def __init__(self, sdata: SearchData) -> None:
         super().__init__(sdata.penalty)
-        self.categories = sdata.qualifiers
+        self.qualifiers = sdata.qualifiers
         self.countries = sdata.countries
 
 
@@ -58,12 +377,80 @@ class PoiSearch(AbstractSearch):
                      details: SearchDetails) -> nres.SearchResults:
         """ Find results for the search in the database.
         """
-        return nres.SearchResults([])
+        bind_params = _details_to_bind_params(details)
+        t = conn.t.placex
+
+        rows: List[SaRow] = []
+
+        if details.near and details.near_radius is not None and details.near_radius < 0.2:
+            # simply search in placex table
+            def _base_query() -> SaSelect:
+                return _select_placex(t) \
+                           .add_columns((-t.c.centroid.ST_Distance(NEAR_PARAM))
+                                         .label('importance'))\
+                           .where(t.c.linked_place_id == None) \
+                           .where(t.c.geometry.within_distance(NEAR_PARAM, NEAR_RADIUS_PARAM)) \
+                           .order_by(t.c.centroid.ST_Distance(NEAR_PARAM)) \
+                           .limit(LIMIT_PARAM)
+
+            classtype = self.qualifiers.values
+            if len(classtype) == 1:
+                cclass, ctype = classtype[0]
+                sql: SaLambdaSelect = sa.lambda_stmt(lambda: _base_query()
+                                                 .where(t.c.class_ == cclass)
+                                                 .where(t.c.type == ctype))
+            else:
+                sql = _base_query().where(sa.or_(*(sa.and_(t.c.class_ == cls, t.c.type == typ)
+                                                   for cls, typ in classtype)))
+
+            if self.countries:
+                sql = sql.where(t.c.country_code.in_(self.countries.values))
+
+            if details.viewbox is not None and details.bounded_viewbox:
+                sql = sql.where(t.c.geometry.intersects(VIEWBOX_PARAM))
+
+            rows.extend(await conn.execute(sql, bind_params))
+        else:
+            # use the class type tables
+            for category in self.qualifiers.values:
+                table = await conn.get_class_table(*category)
+                if table is not None:
+                    sql = _select_placex(t)\
+                               .add_columns(t.c.importance)\
+                               .join(table, t.c.place_id == table.c.place_id)\
+                               .where(t.c.class_ == category[0])\
+                               .where(t.c.type == category[1])
+
+                    if details.viewbox is not None and details.bounded_viewbox:
+                        sql = sql.where(table.c.centroid.intersects(VIEWBOX_PARAM))
+
+                    if details.near and details.near_radius is not None:
+                        sql = sql.order_by(table.c.centroid.ST_Distance(NEAR_PARAM))\
+                                 .where(table.c.centroid.within_distance(NEAR_PARAM,
+                                                                         NEAR_RADIUS_PARAM))
+
+                    if self.countries:
+                        sql = sql.where(t.c.country_code.in_(self.countries.values))
+
+                    sql = sql.limit(LIMIT_PARAM)
+                    rows.extend(await conn.execute(sql, bind_params))
+
+        results = nres.SearchResults()
+        for row in rows:
+            result = nres.create_from_placex_row(row, nres.SearchResult)
+            assert result
+            result.accuracy = self.penalty + self.qualifiers.get_penalty((row.class_, row.type))
+            result.bbox = Bbox.from_wkb(row.bbox)
+            results.append(result)
+
+        return results
 
 
 class CountrySearch(AbstractSearch):
     """ Search for a country name or country code.
     """
+    SEARCH_PRIO = 0
+
     def __init__(self, sdata: SearchData) -> None:
         super().__init__(sdata.penalty)
         self.countries = sdata.countries
@@ -73,7 +460,82 @@ class CountrySearch(AbstractSearch):
                      details: SearchDetails) -> nres.SearchResults:
         """ Find results for the search in the database.
         """
-        return nres.SearchResults([])
+        t = conn.t.placex
+
+        ccodes = self.countries.values
+        sql = _select_placex(t)\
+                .add_columns(t.c.importance)\
+                .where(t.c.country_code.in_(ccodes))\
+                .where(t.c.rank_address == 4)
+
+        if details.geometry_output:
+            sql = _add_geometry_columns(sql, t.c.geometry, details)
+
+        if details.excluded:
+            sql = sql.where(_exclude_places(t))
+
+        sql = filter_by_area(sql, t, details)
+
+        results = nres.SearchResults()
+        for row in await conn.execute(sql, _details_to_bind_params(details)):
+            result = nres.create_from_placex_row(row, nres.SearchResult)
+            assert result
+            result.accuracy = self.penalty + self.countries.get_penalty(row.country_code, 5.0)
+            result.bbox = Bbox.from_wkb(row.bbox)
+            results.append(result)
+
+        if not results:
+            results = await self.lookup_in_country_table(conn, details)
+
+        if results:
+            details.min_rank = min(5, details.max_rank)
+            details.max_rank = min(25, details.max_rank)
+
+        return results
+
+
+    async def lookup_in_country_table(self, conn: SearchConnection,
+                                      details: SearchDetails) -> nres.SearchResults:
+        """ Look up the country in the fallback country tables.
+        """
+        # Avoid the fallback search when this is a more search. Country results
+        # usually are in the first batch of results and it is not possible
+        # to exclude these fallbacks.
+        if details.excluded:
+            return nres.SearchResults()
+
+        t = conn.t.country_name
+        tgrid = conn.t.country_grid
+
+        sql = sa.select(tgrid.c.country_code,
+                        tgrid.c.geometry.ST_Centroid().ST_Collect().ST_Centroid()
+                              .label('centroid'),
+                        tgrid.c.geometry.ST_Collect().ST_Expand(0).label('bbox'))\
+                .where(tgrid.c.country_code.in_(self.countries.values))\
+                .group_by(tgrid.c.country_code)
+
+        sql = filter_by_area(sql, tgrid, details, avoid_index=True)
+
+        sub = sql.subquery('grid')
+
+        sql = sa.select(t.c.country_code,
+                        t.c.name.merge(t.c.derived_name).label('name'),
+                        sub.c.centroid, sub.c.bbox)\
+                .join(sub, t.c.country_code == sub.c.country_code)
+
+        if details.geometry_output:
+            sql = _add_geometry_columns(sql, sub.c.centroid, details)
+
+        results = nres.SearchResults()
+        for row in await conn.execute(sql, _details_to_bind_params(details)):
+            result = nres.create_from_country_row(row, nres.SearchResult)
+            assert result
+            result.bbox = Bbox.from_wkb(row.bbox)
+            result.accuracy = self.penalty + self.countries.get_penalty(row.country_code, 5.0)
+            results.append(result)
+
+        return results
+
 
 
 class PostcodeSearch(AbstractSearch):
@@ -91,12 +553,69 @@ class PostcodeSearch(AbstractSearch):
                      details: SearchDetails) -> nres.SearchResults:
         """ Find results for the search in the database.
         """
-        return nres.SearchResults([])
+        t = conn.t.postcode
+        pcs = self.postcodes.values
+
+        sql = sa.select(t.c.place_id, t.c.parent_place_id,
+                        t.c.rank_search, t.c.rank_address,
+                        t.c.postcode, t.c.country_code,
+                        t.c.geometry.label('centroid'))\
+                .where(t.c.postcode.in_(pcs))
+
+        if details.geometry_output:
+            sql = _add_geometry_columns(sql, t.c.geometry, details)
+
+        penalty: SaExpression = sa.literal(self.penalty)
+
+        if details.viewbox is not None and not details.bounded_viewbox:
+            penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM), 0.0),
+                               (t.c.geometry.intersects(VIEWBOX2_PARAM), 0.5),
+                               else_=1.0)
+
+        if details.near is not None:
+            sql = sql.order_by(t.c.geometry.ST_Distance(NEAR_PARAM))
+
+        sql = filter_by_area(sql, t, details)
+
+        if self.countries:
+            sql = sql.where(t.c.country_code.in_(self.countries.values))
+
+        if details.excluded:
+            sql = sql.where(_exclude_places(t))
+
+        if self.lookups:
+            assert len(self.lookups) == 1
+            tsearch = conn.t.search_name
+            sql = sql.where(tsearch.c.place_id == t.c.parent_place_id)\
+                     .where((tsearch.c.name_vector + tsearch.c.nameaddress_vector)
+                                     .contains(sa.type_coerce(self.lookups[0].tokens,
+                                                              IntArray)))
+
+        for ranking in self.rankings:
+            penalty += ranking.sql_penalty(conn.t.search_name)
+        penalty += sa.case(*((t.c.postcode == v, p) for v, p in self.postcodes),
+                       else_=1.0)
+
+
+        sql = sql.add_columns(penalty.label('accuracy'))
+        sql = sql.order_by('accuracy').limit(LIMIT_PARAM)
+
+        results = nres.SearchResults()
+        for row in await conn.execute(sql, _details_to_bind_params(details)):
+            result = nres.create_from_postcode_row(row, nres.SearchResult)
+            assert result
+            result.accuracy = row.accuracy
+            results.append(result)
+
+        return results
+
 
 
 class PlaceSearch(AbstractSearch):
     """ Generic search for an address or named place.
     """
+    SEARCH_PRIO = 1
+
     def __init__(self, extra_penalty: float, sdata: SearchData, expected_count: int) -> None:
         super().__init__(sdata.penalty + extra_penalty)
         self.countries = sdata.countries
@@ -112,4 +631,186 @@ class PlaceSearch(AbstractSearch):
                      details: SearchDetails) -> nres.SearchResults:
         """ Find results for the search in the database.
         """
-        return nres.SearchResults([])
+        t = conn.t.placex
+        tsearch = conn.t.search_name
+
+        sql: SaLambdaSelect = sa.lambda_stmt(lambda:
+                  _select_placex(t).where(t.c.place_id == tsearch.c.place_id))
+
+
+        if details.geometry_output:
+            sql = _add_geometry_columns(sql, t.c.geometry, details)
+
+        penalty: SaExpression = sa.literal(self.penalty)
+        for ranking in self.rankings:
+            penalty += ranking.sql_penalty(tsearch)
+
+        for lookup in self.lookups:
+            sql = sql.where(lookup.sql_condition(tsearch))
+
+        if self.countries:
+            sql = sql.where(tsearch.c.country_code.in_(self.countries.values))
+
+        if self.postcodes:
+            # if a postcode is given, don't search for state or country level objects
+            sql = sql.where(tsearch.c.address_rank > 9)
+            tpc = conn.t.postcode
+            pcs = self.postcodes.values
+            if self.expected_count > 5000:
+                # Many results expected. Restrict by postcode.
+                sql = sql.where(sa.select(tpc.c.postcode)
+                                  .where(tpc.c.postcode.in_(pcs))
+                                  .where(tsearch.c.centroid.within_distance(tpc.c.geometry, 0.12))
+                                  .exists())
+
+            # Less results, only have a preference for close postcodes
+            pc_near = sa.select(sa.func.min(tpc.c.geometry.ST_Distance(tsearch.c.centroid)))\
+                      .where(tpc.c.postcode.in_(pcs))\
+                      .scalar_subquery()
+            penalty += sa.case((t.c.postcode.in_(pcs), 0.0),
+                               else_=sa.func.coalesce(pc_near, cast(SaColumn, 2.0)))
+
+        if details.viewbox is not None:
+            if details.bounded_viewbox:
+                sql = sql.where(tsearch.c.centroid
+                                         .intersects(VIEWBOX_PARAM,
+                                                     use_index=details.viewbox.area < 0.2))
+            elif not self.postcodes and not self.housenumbers and self.expected_count >= 10000:
+                sql = sql.where(tsearch.c.centroid
+                                         .intersects(VIEWBOX2_PARAM,
+                                                     use_index=details.viewbox.area < 0.5))
+            else:
+                penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM, use_index=False), 0.0),
+                                   (t.c.geometry.intersects(VIEWBOX2_PARAM, use_index=False), 0.5),
+                                   else_=1.0)
+
+        if details.near is not None:
+            if details.near_radius is not None:
+                if details.near_radius < 0.1:
+                    sql = sql.where(tsearch.c.centroid.within_distance(NEAR_PARAM,
+                                                                       NEAR_RADIUS_PARAM))
+                else:
+                    sql = sql.where(tsearch.c.centroid
+                                             .ST_Distance(NEAR_PARAM) <  NEAR_RADIUS_PARAM)
+            sql = sql.add_columns((-tsearch.c.centroid.ST_Distance(NEAR_PARAM))
+                                      .label('importance'))
+            sql = sql.order_by(sa.desc(sa.text('importance')))
+        else:
+            if self.expected_count < 10000\
+               or (details.viewbox is not None and details.viewbox.area < 0.5):
+                sql = sql.order_by(
+                        penalty - sa.case((tsearch.c.importance > 0, tsearch.c.importance),
+                                    else_=0.75001-(sa.cast(tsearch.c.search_rank, sa.Float())/40)))
+            sql = sql.add_columns(t.c.importance)
+
+
+        sql = sql.add_columns(penalty.label('accuracy'))
+
+        if self.expected_count < 10000:
+            sql = sql.order_by(sa.text('accuracy'))
+
+        if self.housenumbers:
+            hnr_list = '|'.join(self.housenumbers.values)
+            sql = sql.where(tsearch.c.address_rank.between(16, 30))\
+                     .where(sa.or_(tsearch.c.address_rank < 30,
+                                   sa.func.RegexpWord(hnr_list, t.c.housenumber)))
+
+            # Cross check for housenumbers, need to do that on a rather large
+            # set. Worst case there are 40.000 main streets in OSM.
+            inner = sql.limit(10000).subquery()
+
+            # Housenumbers from placex
+            thnr = conn.t.placex.alias('hnr')
+            pid_list = sa.func.ArrayAgg(thnr.c.place_id)
+            place_sql = sa.select(pid_list)\
+                          .where(thnr.c.parent_place_id == inner.c.place_id)\
+                          .where(sa.func.RegexpWord(hnr_list, thnr.c.housenumber))\
+                          .where(thnr.c.linked_place_id == None)\
+                          .where(thnr.c.indexed_status == 0)
+
+            if details.excluded:
+                place_sql = place_sql.where(thnr.c.place_id.not_in(sa.bindparam('excluded')))
+            if self.qualifiers:
+                place_sql = place_sql.where(self.qualifiers.sql_restrict(thnr))
+
+            numerals = [int(n) for n in self.housenumbers.values
+                        if n.isdigit() and len(n) < 8]
+            interpol_sql: SaColumn
+            tiger_sql: SaColumn
+            if numerals and \
+               (not self.qualifiers or ('place', 'house') in self.qualifiers.values):
+                # Housenumbers from interpolations
+                interpol_sql = _make_interpolation_subquery(conn.t.osmline, inner,
+                                                            numerals, details)
+                # Housenumbers from Tiger
+                tiger_sql = sa.case((inner.c.country_code == 'us',
+                                     _make_interpolation_subquery(conn.t.tiger, inner,
+                                                                  numerals, details)
+                                    ), else_=None)
+            else:
+                interpol_sql = sa.null()
+                tiger_sql = sa.null()
+
+            unsort = sa.select(inner, place_sql.scalar_subquery().label('placex_hnr'),
+                               interpol_sql.label('interpol_hnr'),
+                               tiger_sql.label('tiger_hnr')).subquery('unsort')
+            sql = sa.select(unsort)\
+                    .order_by(sa.case((unsort.c.placex_hnr != None, 1),
+                                      (unsort.c.interpol_hnr != None, 2),
+                                      (unsort.c.tiger_hnr != None, 3),
+                                      else_=4),
+                              unsort.c.accuracy)
+        else:
+            sql = sql.where(t.c.linked_place_id == None)\
+                     .where(t.c.indexed_status == 0)
+            if self.qualifiers:
+                sql = sql.where(self.qualifiers.sql_restrict(t))
+            if details.excluded:
+                sql = sql.where(_exclude_places(tsearch))
+            if details.min_rank > 0:
+                sql = sql.where(sa.or_(tsearch.c.address_rank >= MIN_RANK_PARAM,
+                                       tsearch.c.search_rank >= MIN_RANK_PARAM))
+            if details.max_rank < 30:
+                sql = sql.where(sa.or_(tsearch.c.address_rank <= MAX_RANK_PARAM,
+                                       tsearch.c.search_rank <= MAX_RANK_PARAM))
+            if details.layers is not None:
+                sql = sql.where(_filter_by_layer(t, details.layers))
+
+        sql = sql.limit(LIMIT_PARAM)
+
+        results = nres.SearchResults()
+        for row in await conn.execute(sql, _details_to_bind_params(details)):
+            result = nres.create_from_placex_row(row, nres.SearchResult)
+            assert result
+            result.bbox = Bbox.from_wkb(row.bbox)
+            result.accuracy = row.accuracy
+            if self.housenumbers and row.rank_address < 30:
+                if row.placex_hnr:
+                    subs = _get_placex_housenumbers(conn, row.placex_hnr, details)
+                elif row.interpol_hnr:
+                    subs = _get_osmline(conn, row.interpol_hnr, numerals, details)
+                elif row.tiger_hnr:
+                    subs = _get_tiger(conn, row.tiger_hnr, numerals, row.osm_id, details)
+                else:
+                    subs = None
+
+                if subs is not None:
+                    async for sub in subs:
+                        assert sub.housenumber
+                        sub.accuracy = result.accuracy
+                        if not any(nr in self.housenumbers.values
+                                   for nr in sub.housenumber.split(';')):
+                            sub.accuracy += 0.6
+                        results.append(sub)
+
+                # Only add the street as a result, if it meets all other
+                # filter conditions.
+                if (not details.excluded or result.place_id not in details.excluded)\
+                   and (not self.qualifiers or result.category in self.qualifiers.values)\
+                   and result.rank_address >= details.min_rank:
+                    result.accuracy += 1.0 # penalty for missing housenumber
+                    results.append(result)
+            else:
+                results.append(result)
+
+        return results