# Partial term to frequent. Try looking up by rare full names first.
name_fulls = self.query.get_tokens(name, TokenType.WORD)
- rare_names = list(filter(lambda t: t.count < 1000, name_fulls))
+ rare_names = list(filter(lambda t: t.count < 10000, name_fulls))
# At this point drop unindexed partials from the address.
# This might yield wrong results, nothing we can do about that.
if not partials_indexed:
addr_tokens = [t.token for t in addr_partials if t.is_indexed]
- log().var_dump('before', penalty)
penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
- log().var_dump('after', penalty)
if rare_names:
# Any of the full names applies with all of the partials from the address
lookup = [dbf.FieldLookup('name_vector', [t.token for t in rare_names], 'lookup_any')]
lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
if addr_tokens:
lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
- yield penalty + 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens)),\
- min(exp_name_count, exp_addr_count), lookup
+ penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
+ if len(rare_names) == len(name_fulls):
+ # if there already was a search for all full tokens,
+ # avoid this if anything has been found
+ penalty += 0.25
+ yield penalty, min(exp_name_count, exp_addr_count), lookup
def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking: