]> git.openstreetmap.org Git - nominatim.git/blobdiff - nominatim/api/search/db_search_builder.py
Merge pull request #3293 from lonvia/rematch-against-country-code
[nominatim.git] / nominatim / api / search / db_search_builder.py
index 7826925aed6ce77271e92bbef4612a3b1e5357bd..fd8cc7af90ffb3aa71581aac842e602d82cc0d39 100644 (file)
@@ -15,6 +15,7 @@ from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange
 from nominatim.api.search.token_assignment import TokenAssignment
 import nominatim.api.search.db_search_fields as dbf
 import nominatim.api.search.db_searches as dbs
 from nominatim.api.search.token_assignment import TokenAssignment
 import nominatim.api.search.db_search_fields as dbf
 import nominatim.api.search.db_searches as dbs
+import nominatim.api.search.db_search_lookups as lookups
 
 
 def wrap_near_search(categories: List[Tuple[str, str]],
 
 
 def wrap_near_search(categories: List[Tuple[str, str]],
@@ -89,12 +90,14 @@ class SearchBuilder:
         if sdata is None:
             return
 
         if sdata is None:
             return
 
-        categories = self.get_search_categories(assignment)
+        near_items = self.get_near_items(assignment)
+        if near_items is not None and not near_items:
+            return # impossible compbination of near items and category parameter
 
         if assignment.name is None:
 
         if assignment.name is None:
-            if categories and not sdata.postcodes:
-                sdata.qualifiers = categories
-                categories = None
+            if near_items and not sdata.postcodes:
+                sdata.qualifiers = near_items
+                near_items = None
                 builder = self.build_poi_search(sdata)
             elif assignment.housenumber:
                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
                 builder = self.build_poi_search(sdata)
             elif assignment.housenumber:
                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
@@ -102,16 +105,19 @@ class SearchBuilder:
                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
             else:
                 builder = self.build_special_search(sdata, assignment.address,
                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
             else:
                 builder = self.build_special_search(sdata, assignment.address,
-                                                    bool(categories))
+                                                    bool(near_items))
         else:
             builder = self.build_name_search(sdata, assignment.name, assignment.address,
         else:
             builder = self.build_name_search(sdata, assignment.name, assignment.address,
-                                             bool(categories))
+                                             bool(near_items))
 
 
-        if categories:
-            penalty = min(categories.penalties)
-            categories.penalties = [p - penalty for p in categories.penalties]
+        if near_items:
+            penalty = min(near_items.penalties)
+            near_items.penalties = [p - penalty for p in near_items.penalties]
             for search in builder:
             for search in builder:
-                yield dbs.NearSearch(penalty + assignment.penalty, categories, search)
+                search_penalty = search.penalty
+                search.penalty = 0.0
+                yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
+                                     near_items, search)
         else:
             for search in builder:
                 search.penalty += assignment.penalty
         else:
             for search in builder:
                 search.penalty += assignment.penalty
@@ -147,7 +153,7 @@ class SearchBuilder:
                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
                                                  [t.token for r in address
                                                   for t in self.query.get_partials_list(r)],
                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
                                                  [t.token for r in address
                                                   for t in self.query.get_partials_list(r)],
-                                                 'restrict')]
+                                                 lookups.Restrict)]
                 penalty += 0.2
             yield dbs.PostcodeSearch(penalty, sdata)
 
                 penalty += 0.2
             yield dbs.PostcodeSearch(penalty, sdata)
 
@@ -157,23 +163,27 @@ class SearchBuilder:
         """ Build a simple address search for special entries where the
             housenumber is the main name token.
         """
         """ Build a simple address search for special entries where the
             housenumber is the main name token.
         """
-        sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
+        sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
+        expected_count = sum(t.count for t in hnrs)
 
         partials = [t for trange in address
                        for t in self.query.get_partials_list(trange)]
 
 
         partials = [t for trange in address
                        for t in self.query.get_partials_list(trange)]
 
-        if len(partials) != 1 or partials[0].count < 10000:
+        if expected_count < 8000:
             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
-                                                 [t.token for t in partials], 'lookup_all'))
+                                                 [t.token for t in partials], lookups.Restrict))
+        elif len(partials) != 1 or partials[0].count < 10000:
+            sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
+                                                 [t.token for t in partials], lookups.LookupAll))
         else:
             sdata.lookups.append(
                 dbf.FieldLookup('nameaddress_vector',
                                 [t.token for t
                                  in self.query.get_tokens(address[0], TokenType.WORD)],
         else:
             sdata.lookups.append(
                 dbf.FieldLookup('nameaddress_vector',
                                 [t.token for t
                                  in self.query.get_tokens(address[0], TokenType.WORD)],
-                                'lookup_any'))
+                                lookups.LookupAny))
 
         sdata.housenumbers = dbf.WeightedStrings([], [])
 
         sdata.housenumbers = dbf.WeightedStrings([], [])
-        yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
+        yield dbs.PlaceSearch(0.05, sdata, expected_count)
 
 
     def build_name_search(self, sdata: dbf.SearchData,
 
 
     def build_name_search(self, sdata: dbf.SearchData,
@@ -214,24 +224,25 @@ class SearchBuilder:
 
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
 
         # Partial term to frequent. Try looking up by rare full names first.
         name_fulls = self.query.get_tokens(name, TokenType.WORD)
-        fulls_count = sum(t.count for t in name_fulls)
-        # At this point drop unindexed partials from the address.
-        # This might yield wrong results, nothing we can do about that.
-        if not partials_indexed:
-            addr_tokens = [t.token for t in addr_partials if t.is_indexed]
-            penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
-        # Any of the full names applies with all of the partials from the address
-        yield penalty, fulls_count / (2**len(addr_partials)),\
-              dbf.lookup_by_any_name([t.token for t in name_fulls], addr_tokens,
-                                     'restrict' if fulls_count < 10000 else 'lookup_all')
+        if name_fulls:
+            fulls_count = sum(t.count for t in name_fulls)
+            # At this point drop unindexed partials from the address.
+            # This might yield wrong results, nothing we can do about that.
+            if not partials_indexed:
+                addr_tokens = [t.token for t in addr_partials if t.is_indexed]
+                penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
+            # Any of the full names applies with all of the partials from the address
+            yield penalty, fulls_count / (2**len(addr_partials)),\
+                  dbf.lookup_by_any_name([t.token for t in name_fulls],
+                                         addr_tokens, fulls_count > 10000)
 
         # To catch remaining results, lookup by name and address
         # We only do this if there is a reasonable number of results expected.
         exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
         if exp_count < 10000 and all(t.is_indexed for t in name_partials):
 
         # To catch remaining results, lookup by name and address
         # We only do this if there is a reasonable number of results expected.
         exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
         if exp_count < 10000 and all(t.is_indexed for t in name_partials):
-            lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
+            lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
             if addr_tokens:
             if addr_tokens:
-                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
+                lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
             penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
             yield penalty, exp_count, lookup
 
             penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
             yield penalty, exp_count, lookup
 
@@ -321,8 +332,15 @@ class SearchBuilder:
                               self.query.get_tokens(assignment.postcode,
                                                     TokenType.POSTCODE))
         if assignment.qualifier:
                               self.query.get_tokens(assignment.postcode,
                                                     TokenType.POSTCODE))
         if assignment.qualifier:
-            sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
-                                                       TokenType.QUALIFIER))
+            tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
+            if self.details.categories:
+                tokens = [t for t in tokens if t.get_category() in self.details.categories]
+                if not tokens:
+                    return None
+            sdata.set_qualifiers(tokens)
+        elif self.details.categories:
+            sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
+                                                      [0.0] * len(self.details.categories))
 
         if assignment.address:
             sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
 
         if assignment.address:
             sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
@@ -332,25 +350,23 @@ class SearchBuilder:
         return sdata
 
 
         return sdata
 
 
-    def get_search_categories(self,
-                              assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
-        """ Collect tokens for category search or use the categories
+    def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
+        """ Collect tokens for near items search or use the categories
             requested per parameter.
             Returns None if no category search is requested.
         """
             requested per parameter.
             Returns None if no category search is requested.
         """
-        if assignment.category:
+        if assignment.near_item:
             tokens: Dict[Tuple[str, str], float] = {}
             tokens: Dict[Tuple[str, str], float] = {}
-            for t in self.query.get_tokens(assignment.category, TokenType.CATEGORY):
+            for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
                 cat = t.get_category()
                 cat = t.get_category()
+                # The category of a near search will be that of near_item.
+                # Thus, if search is restricted to a category parameter,
+                # the two sets must intersect.
                 if (not self.details.categories or cat in self.details.categories)\
                    and t.penalty < tokens.get(cat, 1000.0):
                     tokens[cat] = t.penalty
             return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
 
                 if (not self.details.categories or cat in self.details.categories)\
                    and t.penalty < tokens.get(cat, 1000.0):
                     tokens[cat] = t.penalty
             return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
 
-        if self.details.categories:
-            return dbf.WeightedCategories(self.details.categories,
-                                          [0.0] * len(self.details.categories))
-
         return None
 
 
         return None