X-Git-Url: https://git.openstreetmap.org./nominatim.git/blobdiff_plain/3742fa2929619a4c54a50d3e79e0eeadb4d6ca6f..e1dc4379e0cd100200ac53752442143ca4846fc5:/src/nominatim_db/indexer/indexer.py diff --git a/src/nominatim_db/indexer/indexer.py b/src/nominatim_db/indexer/indexer.py index b4c9732c..d467efbd 100644 --- a/src/nominatim_db/indexer/indexer.py +++ b/src/nominatim_db/indexer/indexer.py @@ -7,15 +7,14 @@ """ Main work horse for indexing (computing addresses) the database. """ -from typing import Optional, Any, cast +from typing import cast, List, Any, Optional import logging import time -import psycopg2.extras +import psycopg -from ..typing import DictCursorResults -from ..db.async_connection import DBConnection, WorkerPool -from ..db.connection import connect, Connection, Cursor, execute_scalar, register_hstore +from ..db.connection import connect, execute_scalar +from ..db.query_pool import QueryPool from ..tokenizer.base import AbstractTokenizer from .progress import ProgressLogger from . import runners @@ -23,76 +22,6 @@ from . import runners LOG = logging.getLogger() -class PlaceFetcher: - """ Asynchronous connection that fetches place details for processing. - """ - def __init__(self, dsn: str, setup_conn: Connection) -> None: - self.wait_time = 0.0 - self.current_ids: Optional[DictCursorResults] = None - self.conn: Optional[DBConnection] = DBConnection(dsn, - cursor_factory=psycopg2.extras.DictCursor) - - # need to fetch those manually because register_hstore cannot - # fetch them on an asynchronous connection below. - hstore_oid = execute_scalar(setup_conn, "SELECT 'hstore'::regtype::oid") - hstore_array_oid = execute_scalar(setup_conn, "SELECT 'hstore[]'::regtype::oid") - - psycopg2.extras.register_hstore(self.conn.conn, oid=hstore_oid, - array_oid=hstore_array_oid) - - - def close(self) -> None: - """ Close the underlying asynchronous connection. - """ - if self.conn: - self.conn.close() - self.conn = None - - - def fetch_next_batch(self, cur: Cursor, runner: runners.Runner) -> bool: - """ Send a request for the next batch of places. - If details for the places are required, they will be fetched - asynchronously. - - Returns true if there is still data available. - """ - ids = cast(Optional[DictCursorResults], cur.fetchmany(100)) - - if not ids: - self.current_ids = None - return False - - assert self.conn is not None - self.current_ids = runner.get_place_details(self.conn, ids) - - return True - - def get_batch(self) -> DictCursorResults: - """ Get the next batch of data, previously requested with - `fetch_next_batch`. - """ - assert self.conn is not None - assert self.conn.cursor is not None - - if self.current_ids is not None and not self.current_ids: - tstart = time.time() - self.conn.wait() - self.wait_time += time.time() - tstart - self.current_ids = cast(Optional[DictCursorResults], - self.conn.cursor.fetchall()) - - return self.current_ids if self.current_ids is not None else [] - - def __enter__(self) -> 'PlaceFetcher': - return self - - - def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: - assert self.conn is not None - self.conn.wait() - self.close() - - class Indexer: """ Main indexing routine. """ @@ -102,7 +31,6 @@ class Indexer: self.tokenizer = tokenizer self.num_threads = num_threads - def has_pending(self) -> bool: """ Check if any data still needs indexing. This function must only be used after the import has finished. @@ -113,8 +41,7 @@ class Indexer: cur.execute("SELECT 'a' FROM placex WHERE indexed_status > 0 LIMIT 1") return cur.rowcount > 0 - - def index_full(self, analyse: bool = True) -> None: + async def index_full(self, analyse: bool = True) -> None: """ Index the complete database. This will first index boundaries followed by all other objects. When `analyse` is True, then the database will be analysed at the appropriate places to @@ -128,36 +55,60 @@ class Indexer: with conn.cursor() as cur: cur.execute('ANALYZE') - if self.index_by_rank(0, 4) > 0: - _analyze() + while True: + if await self.index_by_rank(0, 4) > 0: + _analyze() - if self.index_boundaries(0, 30) > 100: - _analyze() + if await self.index_boundaries(0, 30) > 100: + _analyze() - if self.index_by_rank(5, 25) > 100: - _analyze() + if await self.index_by_rank(5, 25) > 100: + _analyze() - if self.index_by_rank(26, 30) > 1000: - _analyze() + if await self.index_by_rank(26, 30) > 1000: + _analyze() - if self.index_postcodes() > 100: - _analyze() + if await self.index_postcodes() > 100: + _analyze() + if not self.has_pending(): + break - def index_boundaries(self, minrank: int, maxrank: int) -> int: + async def index_boundaries(self, minrank: int, maxrank: int) -> int: """ Index only administrative boundaries within the given rank range. """ total = 0 LOG.warning("Starting indexing boundaries using %s threads", self.num_threads) + minrank = max(minrank, 4) + maxrank = min(maxrank, 25) + + # Precompute number of rows to process for all rows + with connect(self.dsn) as conn: + hstore_info = psycopg.types.TypeInfo.fetch(conn, "hstore") + if hstore_info is None: + raise RuntimeError('Hstore extension is requested but not installed.') + psycopg.types.hstore.register_hstore(hstore_info) + + with conn.cursor() as cur: + cur = conn.execute(""" SELECT rank_search, count(*) + FROM placex + WHERE rank_search between %s and %s + AND class = 'boundary' and type = 'administrative' + AND indexed_status > 0 + GROUP BY rank_search""", + (minrank, maxrank)) + total_tuples = {row.rank_search: row.count for row in cur} + with self.tokenizer.name_analyzer() as analyzer: - for rank in range(max(minrank, 4), min(maxrank, 26)): - total += self._index(runners.BoundaryRunner(rank, analyzer)) + for rank in range(minrank, maxrank + 1): + total += await self._index(runners.BoundaryRunner(rank, analyzer), + total_tuples=total_tuples.get(rank, 0)) return total - def index_by_rank(self, minrank: int, maxrank: int) -> int: + async def index_by_rank(self, minrank: int, maxrank: int) -> int: """ Index all entries of placex in the given rank range (inclusive) in order of their address rank. @@ -169,24 +120,45 @@ class Indexer: LOG.warning("Starting indexing rank (%i to %i) using %i threads", minrank, maxrank, self.num_threads) + # Precompute number of rows to process for all rows + with connect(self.dsn) as conn: + hstore_info = psycopg.types.TypeInfo.fetch(conn, "hstore") + if hstore_info is None: + raise RuntimeError('Hstore extension is requested but not installed.') + psycopg.types.hstore.register_hstore(hstore_info) + + with conn.cursor() as cur: + cur = conn.execute(""" SELECT rank_address, count(*) + FROM placex + WHERE rank_address between %s and %s + AND indexed_status > 0 + GROUP BY rank_address""", + (minrank, maxrank)) + total_tuples = {row.rank_address: row.count for row in cur} + with self.tokenizer.name_analyzer() as analyzer: for rank in range(max(1, minrank), maxrank + 1): - total += self._index(runners.RankRunner(rank, analyzer), 20 if rank == 30 else 1) + if rank >= 30: + batch = 20 + elif rank >= 26: + batch = 5 + else: + batch = 1 + total += await self._index(runners.RankRunner(rank, analyzer), + batch=batch, total_tuples=total_tuples.get(rank, 0)) if maxrank == 30: - total += self._index(runners.RankRunner(0, analyzer)) - total += self._index(runners.InterpolationRunner(analyzer), 20) + total += await self._index(runners.RankRunner(0, analyzer)) + total += await self._index(runners.InterpolationRunner(analyzer), batch=20) return total - - def index_postcodes(self) -> int: + async def index_postcodes(self) -> int: """Index the entries of the location_postcode table. """ LOG.warning("Starting indexing postcodes using %s threads", self.num_threads) - return self._index(runners.PostcodeRunner(), 20) - + return await self._index(runners.PostcodeRunner(), batch=20) def update_status_table(self) -> None: """ Update the status in the status table to 'indexed'. @@ -197,45 +169,63 @@ class Indexer: conn.commit() - def _index(self, runner: runners.Runner, batch: int = 1) -> int: + async def _index(self, runner: runners.Runner, batch: int = 1, + total_tuples: Optional[int] = None) -> int: """ Index a single rank or table. `runner` describes the SQL to use for indexing. `batch` describes the number of objects that - should be processed with a single SQL statement + should be processed with a single SQL statement. + + `total_tuples` may contain the total number of rows to process. + When not supplied, the value will be computed using the + approriate runner function. """ LOG.warning("Starting %s (using batch size %s)", runner.name(), batch) - with connect(self.dsn) as conn: - register_hstore(conn) - total_tuples = execute_scalar(conn, runner.sql_count_objects()) - LOG.debug("Total number of rows: %i", total_tuples) - - conn.commit() + if total_tuples is None: + total_tuples = self._prepare_indexing(runner) - progress = ProgressLogger(runner.name(), total_tuples) + progress = ProgressLogger(runner.name(), total_tuples) - if total_tuples > 0: - with conn.cursor(name='places') as cur: - cur.execute(runner.sql_get_objects()) + if total_tuples > 0: + async with await psycopg.AsyncConnection.connect( + self.dsn, row_factory=psycopg.rows.dict_row) as aconn, \ + QueryPool(self.dsn, self.num_threads, autocommit=True) as pool: + fetcher_time = 0.0 + tstart = time.time() + async with aconn.cursor(name='places') as cur: + query = runner.index_places_query(batch) + params: List[Any] = [] + num_places = 0 + async for place in cur.stream(runner.sql_get_objects()): + fetcher_time += time.time() - tstart - with PlaceFetcher(self.dsn, conn) as fetcher: - with WorkerPool(self.dsn, self.num_threads) as pool: - has_more = fetcher.fetch_next_batch(cur, runner) - while has_more: - places = fetcher.get_batch() + params.extend(runner.index_places_params(place)) + num_places += 1 - # asynchronously get the next batch - has_more = fetcher.fetch_next_batch(cur, runner) + if num_places >= batch: + LOG.debug("Processing places: %s", str(params)) + await pool.put_query(query, params) + progress.add(num_places) + params = [] + num_places = 0 - # And insert the current batch - for idx in range(0, len(places), batch): - part = places[idx:idx + batch] - LOG.debug("Processing places: %s", str(part)) - runner.index_places(pool.next_free_worker(), part) - progress.add(len(part)) + tstart = time.time() - LOG.info("Wait time: fetcher: %.2fs, pool: %.2fs", - fetcher.wait_time, pool.wait_time) + if num_places > 0: + await pool.put_query(runner.index_places_query(num_places), params) - conn.commit() + LOG.info("Wait time: fetcher: %.2fs, pool: %.2fs", + fetcher_time, pool.wait_time) return progress.done() + + def _prepare_indexing(self, runner: runners.Runner) -> int: + with connect(self.dsn) as conn: + hstore_info = psycopg.types.TypeInfo.fetch(conn, "hstore") + if hstore_info is None: + raise RuntimeError('Hstore extension is requested but not installed.') + psycopg.types.hstore.register_hstore(hstore_info) + + total_tuples = execute_scalar(conn, runner.sql_count_objects()) + LOG.debug("Total number of rows: %i", total_tuples) + return cast(int, total_tuples)