X-Git-Url: https://git.openstreetmap.org./nominatim.git/blobdiff_plain/3f72ca4bcab2e0f6f0f6db89c7c2659d06858885..b969c5a62f17e6b2903b2c292436699b81a60166:/nominatim/api/search/db_search_builder.py diff --git a/nominatim/api/search/db_search_builder.py b/nominatim/api/search/db_search_builder.py index a0018480..fd8cc7af 100644 --- a/nominatim/api/search/db_search_builder.py +++ b/nominatim/api/search/db_search_builder.py @@ -15,6 +15,7 @@ from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange from nominatim.api.search.token_assignment import TokenAssignment import nominatim.api.search.db_search_fields as dbf import nominatim.api.search.db_searches as dbs +import nominatim.api.search.db_search_lookups as lookups def wrap_near_search(categories: List[Tuple[str, str]], @@ -90,6 +91,8 @@ class SearchBuilder: return near_items = self.get_near_items(assignment) + if near_items is not None and not near_items: + return # impossible compbination of near items and category parameter if assignment.name is None: if near_items and not sdata.postcodes: @@ -111,7 +114,10 @@ class SearchBuilder: penalty = min(near_items.penalties) near_items.penalties = [p - penalty for p in near_items.penalties] for search in builder: - yield dbs.NearSearch(penalty + assignment.penalty, near_items, search) + search_penalty = search.penalty + search.penalty = 0.0 + yield dbs.NearSearch(penalty + assignment.penalty + search_penalty, + near_items, search) else: for search in builder: search.penalty += assignment.penalty @@ -147,7 +153,7 @@ class SearchBuilder: sdata.lookups = [dbf.FieldLookup('nameaddress_vector', [t.token for r in address for t in self.query.get_partials_list(r)], - 'restrict')] + lookups.Restrict)] penalty += 0.2 yield dbs.PostcodeSearch(penalty, sdata) @@ -157,23 +163,27 @@ class SearchBuilder: """ Build a simple address search for special entries where the housenumber is the main name token. """ - sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')] + sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)] + expected_count = sum(t.count for t in hnrs) partials = [t for trange in address for t in self.query.get_partials_list(trange)] - if len(partials) != 1 or partials[0].count < 10000: + if expected_count < 8000: sdata.lookups.append(dbf.FieldLookup('nameaddress_vector', - [t.token for t in partials], 'lookup_all')) + [t.token for t in partials], lookups.Restrict)) + elif len(partials) != 1 or partials[0].count < 10000: + sdata.lookups.append(dbf.FieldLookup('nameaddress_vector', + [t.token for t in partials], lookups.LookupAll)) else: sdata.lookups.append( dbf.FieldLookup('nameaddress_vector', [t.token for t in self.query.get_tokens(address[0], TokenType.WORD)], - 'lookup_any')) + lookups.LookupAny)) sdata.housenumbers = dbf.WeightedStrings([], []) - yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs)) + yield dbs.PlaceSearch(0.05, sdata, expected_count) def build_name_search(self, sdata: dbf.SearchData, @@ -214,24 +224,25 @@ class SearchBuilder: # Partial term to frequent. Try looking up by rare full names first. name_fulls = self.query.get_tokens(name, TokenType.WORD) - fulls_count = sum(t.count for t in name_fulls) - # At this point drop unindexed partials from the address. - # This might yield wrong results, nothing we can do about that. - if not partials_indexed: - addr_tokens = [t.token for t in addr_partials if t.is_indexed] - penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed) - # Any of the full names applies with all of the partials from the address - yield penalty, fulls_count / (2**len(addr_partials)),\ - dbf.lookup_by_any_name([t.token for t in name_fulls], addr_tokens, - 'restrict' if fulls_count < 10000 else 'lookup_all') + if name_fulls: + fulls_count = sum(t.count for t in name_fulls) + # At this point drop unindexed partials from the address. + # This might yield wrong results, nothing we can do about that. + if not partials_indexed: + addr_tokens = [t.token for t in addr_partials if t.is_indexed] + penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed) + # Any of the full names applies with all of the partials from the address + yield penalty, fulls_count / (2**len(addr_partials)),\ + dbf.lookup_by_any_name([t.token for t in name_fulls], + addr_tokens, fulls_count > 10000) # To catch remaining results, lookup by name and address # We only do this if there is a reasonable number of results expected. exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count if exp_count < 10000 and all(t.is_indexed for t in name_partials): - lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')] + lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)] if addr_tokens: - lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all')) + lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll)) penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens)) yield penalty, exp_count, lookup @@ -348,6 +359,9 @@ class SearchBuilder: tokens: Dict[Tuple[str, str], float] = {} for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM): cat = t.get_category() + # The category of a near search will be that of near_item. + # Thus, if search is restricted to a category parameter, + # the two sets must intersect. if (not self.details.categories or cat in self.details.categories)\ and t.penalty < tokens.get(cat, 1000.0): tokens[cat] = t.penalty