X-Git-Url: https://git.openstreetmap.org./nominatim.git/blobdiff_plain/837bdecde8c8bcc5c09356d7a1db9acef14d48b1..a96b6a1289e3a595b2d3753a1a038abc3f19721a:/nominatim/tools/convert_sqlite.py?ds=sidebyside diff --git a/nominatim/tools/convert_sqlite.py b/nominatim/tools/convert_sqlite.py index 42977ce8..1e7beae5 100644 --- a/nominatim/tools/convert_sqlite.py +++ b/nominatim/tools/convert_sqlite.py @@ -7,13 +7,20 @@ """ Exporting a Nominatim database to SQlite. """ -from typing import Set +from typing import Set, Any +import datetime as dt +import logging from pathlib import Path import sqlalchemy as sa +from nominatim.typing import SaSelect, SaRow +from nominatim.db.sqlalchemy_types import Geometry, IntArray +from nominatim.api.search.query_analyzer_factory import make_query_analyzer import nominatim.api as napi +LOG = logging.getLogger() + async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None: """ Export an existing database to sqlite. The resulting database will be usable against the Python frontend of Nominatim. @@ -22,9 +29,237 @@ async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None: try: outapi = napi.NominatimAPIAsync(project_dir, - {'NOMINATIM_DATABASE_DSN': f"sqlite:dbname={outfile}"}) + {'NOMINATIM_DATABASE_DSN': f"sqlite:dbname={outfile}", + 'NOMINATIM_DATABASE_RW': '1'}) - async with api.begin() as inconn, outapi.begin() as outconn: - pass + try: + async with api.begin() as src, outapi.begin() as dest: + writer = SqliteWriter(src, dest, options) + await writer.write() + finally: + await outapi.close() finally: await api.close() + + +class SqliteWriter: + """ Worker class which creates a new SQLite database. + """ + + def __init__(self, src: napi.SearchConnection, + dest: napi.SearchConnection, options: Set[str]) -> None: + self.src = src + self.dest = dest + self.options = options + + + async def write(self) -> None: + """ Create the database structure and copy the data from + the source database to the destination. + """ + LOG.warning('Setting up spatialite') + await self.dest.execute(sa.select(sa.func.InitSpatialMetaData(True, 'WGS84'))) + + await self.create_tables() + await self.copy_data() + if 'search' in self.options: + await self.create_word_table() + await self.create_indexes() + + + async def create_tables(self) -> None: + """ Set up the database tables. + """ + LOG.warning('Setting up tables') + if 'search' not in self.options: + self.dest.t.meta.remove(self.dest.t.search_name) + else: + await self.create_class_tables() + + await self.dest.connection.run_sync(self.dest.t.meta.create_all) + + # Convert all Geometry columns to Spatialite geometries + for table in self.dest.t.meta.sorted_tables: + for col in table.c: + if isinstance(col.type, Geometry): + await self.dest.execute(sa.select( + sa.func.RecoverGeometryColumn(table.name, col.name, 4326, + col.type.subtype.upper(), 'XY'))) + + + async def create_class_tables(self) -> None: + """ Set up the table that serve class/type-specific geometries. + """ + sql = sa.text("""SELECT tablename FROM pg_tables + WHERE tablename LIKE 'place_classtype_%'""") + for res in await self.src.execute(sql): + for db in (self.src, self.dest): + sa.Table(res[0], db.t.meta, + sa.Column('place_id', sa.BigInteger), + sa.Column('centroid', Geometry)) + + + async def create_word_table(self) -> None: + """ Create the word table. + This table needs the property information to determine the + correct format. Therefore needs to be done after all other + data has been copied. + """ + await make_query_analyzer(self.src) + await make_query_analyzer(self.dest) + src = self.src.t.meta.tables['word'] + dest = self.dest.t.meta.tables['word'] + + await self.dest.connection.run_sync(dest.create) + + LOG.warning("Copying word table") + async_result = await self.src.connection.stream(sa.select(src)) + + async for partition in async_result.partitions(10000): + data = [{k: getattr(r, k) for k in r._fields} for r in partition] + await self.dest.execute(dest.insert(), data) + + await self.dest.connection.run_sync(sa.Index('idx_word_woken', dest.c.word_token).create) + + + async def copy_data(self) -> None: + """ Copy data for all registered tables. + """ + def _getfield(row: SaRow, key: str) -> Any: + value = getattr(row, key) + if isinstance(value, dt.datetime): + if value.tzinfo is not None: + value = value.astimezone(dt.timezone.utc) + return value + + for table in self.dest.t.meta.sorted_tables: + LOG.warning("Copying '%s'", table.name) + async_result = await self.src.connection.stream(self.select_from(table.name)) + + async for partition in async_result.partitions(10000): + data = [{('class_' if k == 'class' else k): _getfield(r, k) + for k in r._fields} + for r in partition] + await self.dest.execute(table.insert(), data) + + # Set up a minimal copy of pg_tables used to look up the class tables later. + pg_tables = sa.Table('pg_tables', self.dest.t.meta, + sa.Column('schemaname', sa.Text, default='public'), + sa.Column('tablename', sa.Text)) + await self.dest.connection.run_sync(pg_tables.create) + data = [{'tablename': t} for t in self.dest.t.meta.tables] + await self.dest.execute(pg_tables.insert().values(data)) + + + async def create_indexes(self) -> None: + """ Add indexes necessary for the frontend. + """ + # reverse place node lookup needs an extra table to simulate a + # partial index with adaptive buffering. + await self.dest.execute(sa.text( + """ CREATE TABLE placex_place_node_areas AS + SELECT place_id, ST_Expand(geometry, + 14.0 * exp(-0.2 * rank_search) - 0.03) as geometry + FROM placex + WHERE rank_address between 5 and 25 + and osm_type = 'N' + and linked_place_id is NULL """)) + await self.dest.execute(sa.select( + sa.func.RecoverGeometryColumn('placex_place_node_areas', 'geometry', + 4326, 'GEOMETRY', 'XY'))) + await self.dest.execute(sa.select(sa.func.CreateSpatialIndex( + 'placex_place_node_areas', 'geometry'))) + + # Remaining indexes. + await self.create_spatial_index('country_grid', 'geometry') + await self.create_spatial_index('placex', 'geometry') + await self.create_spatial_index('osmline', 'linegeo') + await self.create_spatial_index('tiger', 'linegeo') + await self.create_index('placex', 'place_id') + await self.create_index('placex', 'parent_place_id') + await self.create_index('placex', 'rank_address') + await self.create_index('addressline', 'place_id') + await self.create_index('postcode', 'place_id') + await self.create_index('osmline', 'place_id') + await self.create_index('tiger', 'place_id') + + if 'search' in self.options: + await self.create_spatial_index('postcode', 'geometry') + await self.create_spatial_index('search_name', 'centroid') + await self.create_index('search_name', 'place_id') + await self.create_index('osmline', 'parent_place_id') + await self.create_index('tiger', 'parent_place_id') + await self.create_search_index() + + for t in self.dest.t.meta.tables: + if t.startswith('place_classtype_'): + await self.dest.execute(sa.select( + sa.func.CreateSpatialIndex(t, 'centroid'))) + + + async def create_spatial_index(self, table: str, column: str) -> None: + """ Create a spatial index on the given table and column. + """ + await self.dest.execute(sa.select( + sa.func.CreateSpatialIndex(getattr(self.dest.t, table).name, column))) + + + async def create_index(self, table_name: str, column: str) -> None: + """ Create a simple index on the given table and column. + """ + table = getattr(self.dest.t, table_name) + await self.dest.connection.run_sync( + sa.Index(f"idx_{table}_{column}", getattr(table.c, column)).create) + + + async def create_search_index(self) -> None: + """ Create the tables and indexes needed for word lookup. + """ + LOG.warning("Creating reverse search table") + rsn = sa.Table('reverse_search_name', self.dest.t.meta, + sa.Column('word', sa.Integer()), + sa.Column('column', sa.Text()), + sa.Column('places', IntArray)) + await self.dest.connection.run_sync(rsn.create) + + tsrc = self.src.t.search_name + for column in ('name_vector', 'nameaddress_vector'): + sql = sa.select(sa.func.unnest(getattr(tsrc.c, column)).label('word'), + sa.func.ArrayAgg(tsrc.c.place_id).label('places'))\ + .group_by('word') + + async_result = await self.src.connection.stream(sql) + async for partition in async_result.partitions(100): + data = [] + for row in partition: + row.places.sort() + data.append({'word': row.word, + 'column': column, + 'places': row.places}) + await self.dest.execute(rsn.insert(), data) + + await self.dest.connection.run_sync( + sa.Index('idx_reverse_search_name_word', rsn.c.word).create) + + + def select_from(self, table: str) -> SaSelect: + """ Create the SQL statement to select the source columns and rows. + """ + columns = self.src.t.meta.tables[table].c + + if table == 'placex': + # SQLite struggles with Geometries that are larger than 5MB, + # so simplify those. + return sa.select(*(c for c in columns if not isinstance(c.type, Geometry)), + sa.func.ST_AsText(columns.centroid).label('centroid'), + sa.func.ST_AsText( + sa.case((sa.func.ST_MemSize(columns.geometry) < 5000000, + columns.geometry), + else_=sa.func.ST_SimplifyPreserveTopology( + columns.geometry, 0.0001) + )).label('geometry')) + + sql = sa.select(*(sa.func.ST_AsText(c).label(c.name) + if isinstance(c.type, Geometry) else c for c in columns)) + + return sql