X-Git-Url: https://git.openstreetmap.org./nominatim.git/blobdiff_plain/90b40fc3e684350c4dab743cb2c0a26c8792cc39..c4f30de7a30d6d17398e95143916d254caea56ea:/docs/develop/Tokenizers.md?ds=inline diff --git a/docs/develop/Tokenizers.md b/docs/develop/Tokenizers.md index b860ed36..f4a55adc 100644 --- a/docs/develop/Tokenizers.md +++ b/docs/develop/Tokenizers.md @@ -6,7 +6,7 @@ tokenizers that use different strategies for normalisation. This page describes how tokenizers are expected to work and the public API that needs to be implemented when creating a new tokenizer. For information on how to configure a specific tokenizer for a database see the -[tokenizer chapter in the administration guide](../admin/Tokenizers.md). +[tokenizer chapter in the Customization Guide](../customize/Tokenizers.md). ## Generic Architecture @@ -50,7 +50,7 @@ tokenizer's internal token lists and creating a list of all token IDs for the specific place. This list is later needed in the PL/pgSQL part where the indexer needs to add the token IDs to the appropriate search tables. To be able to communicate the list between the Python part and the pl/pgSQL trigger, -the placex table contains a special JSONB column `token_info` which is there +the `placex` table contains a special JSONB column `token_info` which is there for the exclusive use of the tokenizer. The Python part of the tokenizer returns a structured information about the @@ -67,12 +67,17 @@ consequently not create any special indexes on it. ### Querying -The tokenizer is responsible for the initial parsing of the query. It needs -to split the query into appropriate words and terms and match them against -the saved tokens in the database. It then returns the list of possibly matching -tokens and the list of possible splits to the query parser. The parser uses -this information to compute all possible interpretations of the query and -rank them accordingly. +At query time, Nominatim builds up multiple _interpretations_ of the search +query. Each of these interpretations is tried against the database in order +of the likelihood with which they match to the search query. The first +interpretation that yields results wins. + +The interpretations are encapsulated in the `SearchDescription` class. An +instance of this class is created by applying a sequence of +_search tokens_ to an initially empty SearchDescription. It is the +responsibility of the tokenizer to parse the search query and derive all +possible sequences of search tokens. To that end the tokenizer needs to parse +the search query and look up matching words in its own data structures. ## Tokenizer API @@ -86,21 +91,16 @@ for a custom tokenizer implementation. ### Directory Structure -Nominatim expects two files for a tokenizer: - -* `nominiatim/tokenizer/_tokenizer.py` containing the Pythonpart of the - implementation -* `lib-php/tokenizer/_tokenizer.php` with the PHP part of the - implementation - -where `` is a unique name for the tokenizer consisting of only lower-case +Nominatim expects a single file `src/nominatim_db/tokenizer/_tokenizer.py` +containing the Python part of the implementation. +`` is a unique name for the tokenizer consisting of only lower-case letters, digits and underscore. A tokenizer also needs to install some SQL functions. By convention, these should be placed in `lib-sql/tokenizer`. If the tokenizer has a default configuration file, this should be saved in the `settings/_tokenizer.`. -### Configuration and Persistance +### Configuration and Persistence Tokenizers may define custom settings for their configuration. All settings must be prefixed with `NOMINATIM_TOKENIZER_`. Settings may be transient or @@ -125,15 +125,155 @@ class as defined below. ### Python Tokenizer Class -All tokenizers must inherit from `nominatim.tokenizer.base.AbstractTokenizer` +All tokenizers must inherit from `nominatim_db.tokenizer.base.AbstractTokenizer` and implement the abstract functions defined there. -::: nominatim.tokenizer.base.AbstractTokenizer - rendering: - heading_level: 4 +::: nominatim_db.tokenizer.base.AbstractTokenizer + options: + heading_level: 6 ### Python Analyzer Class -::: nominatim.tokenizer.base.AbstractAnalyzer - rendering: - heading_level: 4 +::: nominatim_db.tokenizer.base.AbstractAnalyzer + options: + heading_level: 6 + +### PL/pgSQL Functions + +The tokenizer must provide access functions for the `token_info` column +to the indexer which extracts the necessary information for the global +search tables. If the tokenizer needs additional SQL functions for private +use, then these functions must be prefixed with `token_` in order to ensure +that there are no naming conflicts with the SQL indexer code. + +The following functions are expected: + +```sql +FUNCTION token_get_name_search_tokens(info JSONB) RETURNS INTEGER[] +``` + +Return an array of token IDs of search terms that should match +the name(s) for the given place. These tokens are used to look up the place +by name and, where the place functions as part of an address for another place, +by address. Must return NULL when the place has no name. + +```sql +FUNCTION token_get_name_match_tokens(info JSONB) RETURNS INTEGER[] +``` + +Return an array of token IDs of full names of the place that should be used +to match addresses. The list of match tokens is usually more strict than +search tokens as it is used to find a match between two OSM tag values which +are expected to contain matching full names. Partial terms should not be +used for match tokens. Must return NULL when the place has no name. + +```sql +FUNCTION token_get_housenumber_search_tokens(info JSONB) RETURNS INTEGER[] +``` + +Return an array of token IDs of house number tokens that apply to the place. +Note that a place may have multiple house numbers, for example when apartments +each have their own number. Must be NULL when the place has no house numbers. + +```sql +FUNCTION token_normalized_housenumber(info JSONB) RETURNS TEXT +``` + +Return the house number(s) in the normalized form that can be matched against +a house number token text. If a place has multiple house numbers they must +be listed with a semicolon as delimiter. Must be NULL when the place has no +house numbers. + +```sql +FUNCTION token_is_street_address(info JSONB) RETURNS BOOLEAN +``` + +Return true if this is an object that should be parented against a street. +Only relevant for objects with address rank 30. + +```sql +FUNCTION token_has_addr_street(info JSONB) RETURNS BOOLEAN +``` + +Return true if there are street names to match against for finding the +parent of the object. + + +```sql +FUNCTION token_has_addr_place(info JSONB) RETURNS BOOLEAN +``` + +Return true if there are place names to match against for finding the +parent of the object. + +```sql +FUNCTION token_matches_street(info JSONB, street_tokens INTEGER[]) RETURNS BOOLEAN +``` + +Check if the given tokens (previously saved from `token_get_name_match_tokens()`) +match against the `addr:street` tag name. Must return either NULL or FALSE +when the place has no `addr:street` tag. + +```sql +FUNCTION token_matches_place(info JSONB, place_tokens INTEGER[]) RETURNS BOOLEAN +``` + +Check if the given tokens (previously saved from `token_get_name_match_tokens()`) +match against the `addr:place` tag name. Must return either NULL or FALSE +when the place has no `addr:place` tag. + + +```sql +FUNCTION token_addr_place_search_tokens(info JSONB) RETURNS INTEGER[] +``` + +Return the search token IDs extracted from the `addr:place` tag. These tokens +are used for searches by address when no matching place can be found in the +database. Must be NULL when the place has no `addr:place` tag. + +```sql +FUNCTION token_get_address_keys(info JSONB) RETURNS SETOF TEXT +``` + +Return the set of keys for which address information is provided. This +should correspond to the list of (relevant) `addr:*` tags with the `addr:` +prefix removed or the keys used in the `address` dictionary of the place info. + +```sql +FUNCTION token_get_address_search_tokens(info JSONB, key TEXT) RETURNS INTEGER[] +``` + +Return the array of search tokens for the given address part. `key` can be +expected to be one of those returned with `token_get_address_keys()`. The +search tokens are added to the address search vector of the place, when no +corresponding OSM object could be found for the given address part from which +to copy the name information. + +```sql +FUNCTION token_matches_address(info JSONB, key TEXT, tokens INTEGER[]) +``` + +Check if the given tokens match against the address part `key`. + +__Warning:__ the tokens that are handed in are the lists previously saved +from `token_get_name_search_tokens()`, _not_ from the match token list. This +is an historical oddity which will be fixed at some point in the future. +Currently, tokenizers are encouraged to make sure that matching works against +both the search token list and the match token list. + +```sql +FUNCTION token_get_postcode(info JSONB) RETURNS TEXT +``` + +Return the postcode for the object, if any exists. The postcode must be in +the form that should also be presented to the end-user. + +```sql +FUNCTION token_strip_info(info JSONB) RETURNS JSONB +``` + +Return the part of the `token_info` field that should be stored in the database +permanently. The indexer calls this function when all processing is done and +replaces the content of the `token_info` column with the returned value before +the trigger stores the information in the database. May return NULL if no +information should be stored permanently.