X-Git-Url: https://git.openstreetmap.org./nominatim.git/blobdiff_plain/af968d49039f5cd8f0ef5839558a57867d7ef111..fd26310d6adc5fc5685bdd0de36afa66e85b9c9c:/nominatim/tokenizer/legacy_tokenizer.py diff --git a/nominatim/tokenizer/legacy_tokenizer.py b/nominatim/tokenizer/legacy_tokenizer.py index ab3e320e..1b68a494 100644 --- a/nominatim/tokenizer/legacy_tokenizer.py +++ b/nominatim/tokenizer/legacy_tokenizer.py @@ -1,44 +1,680 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# This file is part of Nominatim. (https://nominatim.org) +# +# Copyright (C) 2022 by the Nominatim developer community. +# For a full list of authors see the git log. """ Tokenizer implementing normalisation as used before Nominatim 4. """ -from nominatim.db.connection import connect +from typing import Optional, Sequence, List, Tuple, Mapping, Any, Callable, \ + cast, Dict, Set, Iterable +from collections import OrderedDict +import logging +from pathlib import Path +import re +import shutil +from textwrap import dedent + +from icu import Transliterator +import psycopg2 +import psycopg2.extras + +from nominatim.db.connection import connect, Connection +from nominatim.config import Configuration from nominatim.db import properties +from nominatim.db import utils as db_utils +from nominatim.db.sql_preprocessor import SQLPreprocessor +from nominatim.data.place_info import PlaceInfo +from nominatim.errors import UsageError +from nominatim.tokenizer.base import AbstractAnalyzer, AbstractTokenizer DBCFG_NORMALIZATION = "tokenizer_normalization" +DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq" + +LOG = logging.getLogger() -def create(dsn, data_dir): +def create(dsn: str, data_dir: Path) -> 'LegacyTokenizer': """ Create a new instance of the tokenizer provided by this module. """ return LegacyTokenizer(dsn, data_dir) -class LegacyTokenizer: + +def _install_module(config_module_path: str, src_dir: Path, module_dir: Path) -> str: + """ Copies the PostgreSQL normalisation module into the project + directory if necessary. For historical reasons the module is + saved in the '/module' subdirectory and not with the other tokenizer + data. + + The function detects when the installation is run from the + build directory. It doesn't touch the module in that case. + """ + # Custom module locations are simply used as is. + if config_module_path: + LOG.info("Using custom path for database module at '%s'", config_module_path) + return config_module_path + + # Compatibility mode for builddir installations. + if module_dir.exists() and src_dir.samefile(module_dir): + LOG.info('Running from build directory. Leaving database module as is.') + return str(module_dir) + + # In any other case install the module in the project directory. + if not module_dir.exists(): + module_dir.mkdir() + + destfile = module_dir / 'nominatim.so' + shutil.copy(str(src_dir / 'nominatim.so'), str(destfile)) + destfile.chmod(0o755) + + LOG.info('Database module installed at %s', str(destfile)) + + return str(module_dir) + + +def _check_module(module_dir: str, conn: Connection) -> None: + """ Try to use the PostgreSQL module to confirm that it is correctly + installed and accessible from PostgreSQL. + """ + with conn.cursor() as cur: + try: + cur.execute("""CREATE FUNCTION nominatim_test_import_func(text) + RETURNS text AS %s, 'transliteration' + LANGUAGE c IMMUTABLE STRICT; + DROP FUNCTION nominatim_test_import_func(text) + """, (f'{module_dir}/nominatim.so', )) + except psycopg2.DatabaseError as err: + LOG.fatal("Error accessing database module: %s", err) + raise UsageError("Database module cannot be accessed.") from err + + +class LegacyTokenizer(AbstractTokenizer): """ The legacy tokenizer uses a special PostgreSQL module to normalize names and queries. The tokenizer thus implements normalization through calls to the database. """ - def __init__(self, dsn, data_dir): + def __init__(self, dsn: str, data_dir: Path) -> None: self.dsn = dsn self.data_dir = data_dir - self.normalization = None + self.normalization: Optional[str] = None - def init_new_db(self, config): + def init_new_db(self, config: Configuration, init_db: bool = True) -> None: """ Set up a new tokenizer for the database. This copies all necessary data in the project directory to make sure the tokenizer remains stable even over updates. """ + assert config.project_dir is not None + module_dir = _install_module(config.DATABASE_MODULE_PATH, + config.lib_dir.module, + config.project_dir / 'module') + self.normalization = config.TERM_NORMALIZATION - # Stable configuration is saved in the database. + self._install_php(config, overwrite=True) + with connect(self.dsn) as conn: - properties.set_property(conn, DBCFG_NORMALIZATION, - self.normalization) + _check_module(module_dir, conn) + self._save_config(conn, config) + conn.commit() + if init_db: + self.update_sql_functions(config) + self._init_db_tables(config) - def init_from_project(self): + + def init_from_project(self, config: Configuration) -> None: """ Initialise the tokenizer from the project directory. """ + assert config.project_dir is not None + with connect(self.dsn) as conn: self.normalization = properties.get_property(conn, DBCFG_NORMALIZATION) + + if not (config.project_dir / 'module' / 'nominatim.so').exists(): + _install_module(config.DATABASE_MODULE_PATH, + config.lib_dir.module, + config.project_dir / 'module') + + self._install_php(config, overwrite=False) + + def finalize_import(self, config: Configuration) -> None: + """ Do any required postprocessing to make the tokenizer data ready + for use. + """ + with connect(self.dsn) as conn: + sqlp = SQLPreprocessor(conn, config) + sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql') + + + def update_sql_functions(self, config: Configuration) -> None: + """ Reimport the SQL functions for this tokenizer. + """ + assert config.project_dir is not None + + with connect(self.dsn) as conn: + max_word_freq = properties.get_property(conn, DBCFG_MAXWORDFREQ) + modulepath = config.DATABASE_MODULE_PATH or \ + str((config.project_dir / 'module').resolve()) + sqlp = SQLPreprocessor(conn, config) + sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer.sql', + max_word_freq=max_word_freq, + modulepath=modulepath) + + + def check_database(self, _: Configuration) -> Optional[str]: + """ Check that the tokenizer is set up correctly. + """ + hint = """\ + The Postgresql extension nominatim.so was not correctly loaded. + + Error: {error} + + Hints: + * Check the output of the CMmake/make installation step + * Does nominatim.so exist? + * Does nominatim.so exist on the database server? + * Can nominatim.so be accessed by the database user? + """ + with connect(self.dsn) as conn: + with conn.cursor() as cur: + try: + out = cur.scalar("SELECT make_standard_name('a')") + except psycopg2.Error as err: + return hint.format(error=str(err)) + + if out != 'a': + return hint.format(error='Unexpected result for make_standard_name()') + + return None + + + def migrate_database(self, config: Configuration) -> None: + """ Initialise the project directory of an existing database for + use with this tokenizer. + + This is a special migration function for updating existing databases + to new software versions. + """ + assert config.project_dir is not None + + self.normalization = config.TERM_NORMALIZATION + module_dir = _install_module(config.DATABASE_MODULE_PATH, + config.lib_dir.module, + config.project_dir / 'module') + + with connect(self.dsn) as conn: + _check_module(module_dir, conn) + self._save_config(conn, config) + + + def update_statistics(self) -> None: + """ Recompute the frequency of full words. + """ + with connect(self.dsn) as conn: + if conn.table_exists('search_name'): + with conn.cursor() as cur: + cur.drop_table("word_frequencies") + LOG.info("Computing word frequencies") + cur.execute("""CREATE TEMP TABLE word_frequencies AS + SELECT unnest(name_vector) as id, count(*) + FROM search_name GROUP BY id""") + cur.execute("CREATE INDEX ON word_frequencies(id)") + LOG.info("Update word table with recomputed frequencies") + cur.execute("""UPDATE word SET search_name_count = count + FROM word_frequencies + WHERE word_token like ' %' and word_id = id""") + cur.drop_table("word_frequencies") + conn.commit() + + + def update_word_tokens(self) -> None: + """ No house-keeping implemented for the legacy tokenizer. + """ + LOG.info("No tokenizer clean-up available.") + + + def name_analyzer(self) -> 'LegacyNameAnalyzer': + """ Create a new analyzer for tokenizing names and queries + using this tokinzer. Analyzers are context managers and should + be used accordingly: + + ``` + with tokenizer.name_analyzer() as analyzer: + analyser.tokenize() + ``` + + When used outside the with construct, the caller must ensure to + call the close() function before destructing the analyzer. + + Analyzers are not thread-safe. You need to instantiate one per thread. + """ + normalizer = Transliterator.createFromRules("phrase normalizer", + self.normalization) + return LegacyNameAnalyzer(self.dsn, normalizer) + + + def most_frequent_words(self, conn: Connection, num: int) -> List[str]: + """ Return a list of the `num` most frequent full words + in the database. + """ + with conn.cursor() as cur: + cur.execute(""" SELECT word FROM word WHERE word is not null + ORDER BY search_name_count DESC LIMIT %s""", (num,)) + return list(s[0] for s in cur) + + + def _install_php(self, config: Configuration, overwrite: bool = True) -> None: + """ Install the php script for the tokenizer. + """ + php_file = self.data_dir / "tokenizer.php" + + if not php_file.exists() or overwrite: + php_file.write_text(dedent(f"""\ + None: + """ Set up the word table and fill it with pre-computed word + frequencies. + """ + with connect(self.dsn) as conn: + sqlp = SQLPreprocessor(conn, config) + sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_tables.sql') + conn.commit() + + LOG.warning("Precomputing word tokens") + db_utils.execute_file(self.dsn, config.lib_dir.data / 'words.sql') + + + def _save_config(self, conn: Connection, config: Configuration) -> None: + """ Save the configuration that needs to remain stable for the given + database as database properties. + """ + assert self.normalization is not None + + properties.set_property(conn, DBCFG_NORMALIZATION, self.normalization) + properties.set_property(conn, DBCFG_MAXWORDFREQ, config.MAX_WORD_FREQUENCY) + + +class LegacyNameAnalyzer(AbstractAnalyzer): + """ The legacy analyzer uses the special Postgresql module for + splitting names. + + Each instance opens a connection to the database to request the + normalization. + """ + + def __init__(self, dsn: str, normalizer: Any): + self.conn: Optional[Connection] = connect(dsn).connection + self.conn.autocommit = True + self.normalizer = normalizer + psycopg2.extras.register_hstore(self.conn) + + self._cache = _TokenCache(self.conn) + + + def close(self) -> None: + """ Free all resources used by the analyzer. + """ + if self.conn: + self.conn.close() + self.conn = None + + + def get_word_token_info(self, words: Sequence[str]) -> List[Tuple[str, str, int]]: + """ Return token information for the given list of words. + If a word starts with # it is assumed to be a full name + otherwise is a partial name. + + The function returns a list of tuples with + (original word, word token, word id). + + The function is used for testing and debugging only + and not necessarily efficient. + """ + assert self.conn is not None + with self.conn.cursor() as cur: + cur.execute("""SELECT t.term, word_token, word_id + FROM word, (SELECT unnest(%s::TEXT[]) as term) t + WHERE word_token = (CASE + WHEN left(t.term, 1) = '#' THEN + ' ' || make_standard_name(substring(t.term from 2)) + ELSE + make_standard_name(t.term) + END) + and class is null and country_code is null""", + (words, )) + + return [(r[0], r[1], r[2]) for r in cur] + + + def normalize(self, phrase: str) -> str: + """ Normalize the given phrase, i.e. remove all properties that + are irrelevant for search. + """ + return cast(str, self.normalizer.transliterate(phrase)) + + + def normalize_postcode(self, postcode: str) -> str: + """ Convert the postcode to a standardized form. + + This function must yield exactly the same result as the SQL function + 'token_normalized_postcode()'. + """ + return postcode.strip().upper() + + + def update_postcodes_from_db(self) -> None: + """ Update postcode tokens in the word table from the location_postcode + table. + """ + assert self.conn is not None + + with self.conn.cursor() as cur: + # This finds us the rows in location_postcode and word that are + # missing in the other table. + cur.execute("""SELECT * FROM + (SELECT pc, word FROM + (SELECT distinct(postcode) as pc FROM location_postcode) p + FULL JOIN + (SELECT word FROM word + WHERE class ='place' and type = 'postcode') w + ON pc = word) x + WHERE pc is null or word is null""") + + to_delete = [] + to_add = [] + + for postcode, word in cur: + if postcode is None: + to_delete.append(word) + else: + to_add.append(postcode) + + if to_delete: + cur.execute("""DELETE FROM WORD + WHERE class ='place' and type = 'postcode' + and word = any(%s) + """, (to_delete, )) + if to_add: + cur.execute("""SELECT count(create_postcode_id(pc)) + FROM unnest(%s) as pc + """, (to_add, )) + + + + def update_special_phrases(self, phrases: Iterable[Tuple[str, str, str, str]], + should_replace: bool) -> None: + """ Replace the search index for special phrases with the new phrases. + """ + assert self.conn is not None + + norm_phrases = set(((self.normalize(p[0]), p[1], p[2], p[3]) + for p in phrases)) + + with self.conn.cursor() as cur: + # Get the old phrases. + existing_phrases = set() + cur.execute("""SELECT word, class, type, operator FROM word + WHERE class != 'place' + OR (type != 'house' AND type != 'postcode')""") + for label, cls, typ, oper in cur: + existing_phrases.add((label, cls, typ, oper or '-')) + + to_add = norm_phrases - existing_phrases + to_delete = existing_phrases - norm_phrases + + if to_add: + cur.execute_values( + """ INSERT INTO word (word_id, word_token, word, class, type, + search_name_count, operator) + (SELECT nextval('seq_word'), ' ' || make_standard_name(name), name, + class, type, 0, + CASE WHEN op in ('in', 'near') THEN op ELSE null END + FROM (VALUES %s) as v(name, class, type, op))""", + to_add) + + if to_delete and should_replace: + cur.execute_values( + """ DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op) + WHERE word = name and class = in_class and type = in_type + and ((op = '-' and operator is null) or op = operator)""", + to_delete) + + LOG.info("Total phrases: %s. Added: %s. Deleted: %s", + len(norm_phrases), len(to_add), len(to_delete)) + + + def add_country_names(self, country_code: str, names: Mapping[str, str]) -> None: + """ Add names for the given country to the search index. + """ + assert self.conn is not None + + with self.conn.cursor() as cur: + cur.execute( + """INSERT INTO word (word_id, word_token, country_code) + (SELECT nextval('seq_word'), lookup_token, %s + FROM (SELECT DISTINCT ' ' || make_standard_name(n) as lookup_token + FROM unnest(%s)n) y + WHERE NOT EXISTS(SELECT * FROM word + WHERE word_token = lookup_token and country_code = %s)) + """, (country_code, list(names.values()), country_code)) + + + def process_place(self, place: PlaceInfo) -> Mapping[str, Any]: + """ Determine tokenizer information about the given place. + + Returns a JSON-serialisable structure that will be handed into + the database via the token_info field. + """ + assert self.conn is not None + + token_info = _TokenInfo(self._cache) + + names = place.name + + if names: + token_info.add_names(self.conn, names) + + if place.is_country(): + assert place.country_code is not None + self.add_country_names(place.country_code, names) + + address = place.address + if address: + self._process_place_address(token_info, address) + + return token_info.data + + + def _process_place_address(self, token_info: '_TokenInfo', address: Mapping[str, str]) -> None: + assert self.conn is not None + hnrs = [] + addr_terms = [] + + for key, value in address.items(): + if key == 'postcode': + # Make sure the normalized postcode is present in the word table. + if re.search(r'[:,;]', value) is None: + norm_pc = self.normalize_postcode(value) + token_info.set_postcode(norm_pc) + self._cache.add_postcode(self.conn, norm_pc) + elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'): + hnrs.append(value) + elif key == 'street': + token_info.add_street(self.conn, value) + elif key == 'place': + token_info.add_place(self.conn, value) + elif not key.startswith('_') \ + and key not in ('country', 'full', 'inclusion'): + addr_terms.append((key, value)) + + if hnrs: + token_info.add_housenumbers(self.conn, hnrs) + + if addr_terms: + token_info.add_address_terms(self.conn, addr_terms) + + + +class _TokenInfo: + """ Collect token information to be sent back to the database. + """ + def __init__(self, cache: '_TokenCache') -> None: + self.cache = cache + self.data: Dict[str, Any] = {} + + + def add_names(self, conn: Connection, names: Mapping[str, str]) -> None: + """ Add token information for the names of the place. + """ + with conn.cursor() as cur: + # Create the token IDs for all names. + self.data['names'] = cur.scalar("SELECT make_keywords(%s)::text", + (names, )) + + + def add_housenumbers(self, conn: Connection, hnrs: Sequence[str]) -> None: + """ Extract housenumber information from the address. + """ + if len(hnrs) == 1: + token = self.cache.get_housenumber(hnrs[0]) + if token is not None: + self.data['hnr_tokens'] = token + self.data['hnr'] = hnrs[0] + return + + # split numbers if necessary + simple_list: List[str] = [] + for hnr in hnrs: + simple_list.extend((x.strip() for x in re.split(r'[;,]', hnr))) + + if len(simple_list) > 1: + simple_list = list(set(simple_list)) + + with conn.cursor() as cur: + cur.execute("SELECT * FROM create_housenumbers(%s)", (simple_list, )) + result = cur.fetchone() + assert result is not None + self.data['hnr_tokens'], self.data['hnr'] = result + + + def set_postcode(self, postcode: str) -> None: + """ Set or replace the postcode token with the given value. + """ + self.data['postcode'] = postcode + + def add_street(self, conn: Connection, street: str) -> None: + """ Add addr:street match terms. + """ + def _get_street(name: str) -> Optional[str]: + with conn.cursor() as cur: + return cast(Optional[str], + cur.scalar("SELECT word_ids_from_name(%s)::text", (name, ))) + + tokens = self.cache.streets.get(street, _get_street) + self.data['street'] = tokens or '{}' + + + def add_place(self, conn: Connection, place: str) -> None: + """ Add addr:place search and match terms. + """ + def _get_place(name: str) -> Tuple[List[int], List[int]]: + with conn.cursor() as cur: + cur.execute("""SELECT make_keywords(hstore('name' , %s))::text, + word_ids_from_name(%s)::text""", + (name, name)) + return cast(Tuple[List[int], List[int]], cur.fetchone()) + + self.data['place_search'], self.data['place_match'] = \ + self.cache.places.get(place, _get_place) + + + def add_address_terms(self, conn: Connection, terms: Sequence[Tuple[str, str]]) -> None: + """ Add additional address terms. + """ + def _get_address_term(name: str) -> Tuple[List[int], List[int]]: + with conn.cursor() as cur: + cur.execute("""SELECT addr_ids_from_name(%s)::text, + word_ids_from_name(%s)::text""", + (name, name)) + return cast(Tuple[List[int], List[int]], cur.fetchone()) + + tokens = {} + for key, value in terms: + items = self.cache.address_terms.get(value, _get_address_term) + if items[0] or items[1]: + tokens[key] = items + + if tokens: + self.data['addr'] = tokens + + +class _LRU: + """ Least recently used cache that accepts a generator function to + produce the item when there is a cache miss. + """ + + def __init__(self, maxsize: int = 128): + self.data: 'OrderedDict[str, Any]' = OrderedDict() + self.maxsize = maxsize + + + def get(self, key: str, generator: Callable[[str], Any]) -> Any: + """ Get the item with the given key from the cache. If nothing + is found in the cache, generate the value through the + generator function and store it in the cache. + """ + value = self.data.get(key) + if value is not None: + self.data.move_to_end(key) + else: + value = generator(key) + if len(self.data) >= self.maxsize: + self.data.popitem(last=False) + self.data[key] = value + + return value + + +class _TokenCache: + """ Cache for token information to avoid repeated database queries. + + This cache is not thread-safe and needs to be instantiated per + analyzer. + """ + def __init__(self, conn: Connection): + # various LRU caches + self.streets = _LRU(maxsize=256) + self.places = _LRU(maxsize=128) + self.address_terms = _LRU(maxsize=1024) + + # Lookup houseunumbers up to 100 and cache them + with conn.cursor() as cur: + cur.execute("""SELECT i, ARRAY[getorcreate_housenumber_id(i::text)]::text + FROM generate_series(1, 100) as i""") + self._cached_housenumbers: Dict[str, str] = {str(r[0]): r[1] for r in cur} + + # For postcodes remember the ones that have already been added + self.postcodes: Set[str] = set() + + def get_housenumber(self, number: str) -> Optional[str]: + """ Get a housenumber token from the cache. + """ + return self._cached_housenumbers.get(number) + + + def add_postcode(self, conn: Connection, postcode: str) -> None: + """ Make sure the given postcode is in the database. + """ + if postcode not in self.postcodes: + with conn.cursor() as cur: + cur.execute('SELECT create_postcode_id(%s)', (postcode, )) + self.postcodes.add(postcode)