has_many :old_relations, :foreign_key => 'id', :order => 'version'
- has_many :relation_members, :foreign_key => 'id'
+ has_many :relation_members, :foreign_key => 'id', :order => 'sequence_id'
has_many :relation_tags, :foreign_key => 'id'
has_many :containing_relation_members, :class_name => "RelationMember", :as => :member
user_display_name_cache[self.changeset.user_id] = nil
end
- el1['user'] = user_display_name_cache[self.changeset.user_id] unless user_display_name_cache[self.changeset.user_id].nil?
+ if not user_display_name_cache[self.changeset.user_id].nil?
+ el1['user'] = user_display_name_cache[self.changeset.user_id]
+ el1['uid'] = self.changeset.user_id.to_s
+ end
self.relation_members.each do |member|
p=0
# changed members in an array, as the bounding box updates for
# elements are per-element, not blanked on/off like for tags.
changed_members = Array.new
- members = self.members_as_hash
+ members = Hash.new
+ self.members.each do |m|
+ # should be: h[[m.id, m.type]] = m.role, but someone prefers arrays
+ members[[m[1], m[0]]] = m[2]
+ end
relation_members.each do |old_member|
key = [old_member.member_id.to_s, old_member.member_type]
if members.has_key? key
- # i'd love to rely on rails' dirty handling here, but the
- # relation members are always dirty because of the member_class
- # handling.
- if members[key] != old_member.member_role
- old_member.member_role = members[key]
- changed_members << key
- old_member.save!
- end
members.delete key
-
else
changed_members << key
- RelationMember.delete_all ['id = ? and member_id = ? and member_type = ?', self.id, old_member.member_id, old_member.member_type]
end
end
# any remaining members must be new additions
changed_members += members.keys
- members.each do |k,v|
+
+ # update the members. first delete all the old members, as the new
+ # members may be in a different order and i don't feel like implementing
+ # a longest common subsequence algorithm to optimise this.
+ members = self.members
+ RelationMember.delete_all(:id => self.id)
+ members.each_with_index do |m,i|
mem = RelationMember.new
- mem.id = self.id
- mem.member_type = k[1];
- mem.member_id = k[0];
- mem.member_role = v;
+ mem.id = [self.id, i]
+ mem.member_type = m[0]
+ mem.member_id = m[1]
+ mem.member_role = m[2]
mem.save!
end
end
end
+ # tell the changeset we updated one element only
+ changeset.add_changes! 1
+
# save the (maybe updated) changeset bounding box
changeset.save!
end
def delete_with_history!(new_relation, user)
if self.visible
check_consistency(self, new_relation, user)
- if RelationMember.find(:first, :joins => "INNER JOIN current_relations ON current_relations.id=current_relation_members.id", :conditions => [ "visible = 1 AND member_type='relation' and member_id=? ", self.id ])
+ if RelationMember.find(:first, :joins => "INNER JOIN current_relations ON current_relations.id=current_relation_members.id", :conditions => [ "visible = ? AND member_type='relation' and member_id=? ", true, self.id ])
raise OSM::APIPreconditionFailedError.new
else
self.changeset_id = new_relation.changeset_id
def preconditions_ok?
# These are hastables that store an id in the index of all
# the nodes/way/relations that have already been added.
- # Once we know the id of the node/way/relation exists
- # we check to see if it is already existing in the hashtable
- # if it does, then we return false. Otherwise
- # we add it to the relevant hash table, with the value true..
+ # If the member is valid and visible then we add it to the
+ # relevant hash table, with the value true as a cache.
# Thus if you have nodes with the ids of 50 and 1 already in the
# relation, then the hash table nodes would contain:
# => {50=>true, 1=>true}
- nodes = Hash.new
- ways = Hash.new
- relations = Hash.new
+ elements = { :node => Hash.new, :way => Hash.new, :relation => Hash.new }
self.members.each do |m|
- if (m[0] == "node")
- n = Node.find(:first, :conditions => ["id = ?", m[1]])
- unless n and n.visible
- return false
- end
- if nodes[m[1]]
- return false
- else
- nodes[m[1]] = true
- end
- elsif (m[0] == "way")
- w = Way.find(:first, :conditions => ["id = ?", m[1]])
- unless w and w.visible and w.preconditions_ok?
- return false
- end
- if ways[m[1]]
- return false
- else
- ways[m[1]] = true
- end
- elsif (m[0] == "relation")
- e = Relation.find(:first, :conditions => ["id = ?", m[1]])
- unless e and e.visible and e.preconditions_ok?
- return false
- end
- if relations[m[1]]
+ # find the hash for the element type or die
+ hash = elements[m[0].to_sym] or return false
+
+ # unless its in the cache already
+ unless hash.key? m[1]
+ # use reflection to look up the appropriate class
+ model = Kernel.const_get(m[0].capitalize)
+
+ # get the element with that ID
+ element = model.find(m[1])
+
+ # and check that it is OK to use.
+ unless element and element.visible? and element.preconditions_ok?
return false
- else
- relations[m[1]] = true
end
- else
- return false
+ hash[m[1]] = true
end
end
+
return true
rescue
return false
end
- ##
- # members in a hash table [id,type] => role
- def members_as_hash
- h = Hash.new
- members.each do |m|
- # should be: h[[m.id, m.type]] = m.role, but someone prefers arrays
- h[[m[1], m[0]]] = m[2]
- end
- return h
- end
-
# Temporary method to match interface to nodes
def tags_as_hash
return self.tags