1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2024 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Conversion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from ..types import SearchDetails, DataLayer
14 from .query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from .token_assignment import TokenAssignment
16 from . import db_search_fields as dbf
17 from . import db_searches as dbs
18 from . import db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 near_items = self.get_near_items(assignment)
94 if near_items is not None and not near_items:
95 return # impossible compbination of near items and category parameter
97 if assignment.name is None:
98 if near_items and not sdata.postcodes:
99 sdata.qualifiers = near_items
101 builder = self.build_poi_search(sdata)
102 elif assignment.housenumber:
103 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104 TokenType.HOUSENUMBER)
105 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
107 builder = self.build_special_search(sdata, assignment.address,
110 builder = self.build_name_search(sdata, assignment.name, assignment.address,
114 penalty = min(near_items.penalties)
115 near_items.penalties = [p - penalty for p in near_items.penalties]
116 for search in builder:
117 search_penalty = search.penalty
119 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
122 for search in builder:
123 search.penalty += assignment.penalty
127 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128 """ Build abstract search query for a simple category search.
129 This kind of search requires an additional geographic constraint.
131 if not sdata.housenumbers \
132 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133 yield dbs.PoiSearch(sdata)
136 def build_special_search(self, sdata: dbf.SearchData,
137 address: List[TokenRange],
138 is_category: bool) -> Iterator[dbs.AbstractSearch]:
139 """ Build abstract search queries for searches that do not involve
143 # No special searches over qualifiers supported.
146 if sdata.countries and not address and not sdata.postcodes \
147 and self.configured_for_country:
148 yield dbs.CountrySearch(sdata)
150 if sdata.postcodes and (is_category or self.configured_for_postcode):
151 penalty = 0.0 if sdata.countries else 0.1
153 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154 [t.token for r in address
155 for t in self.query.get_partials_list(r)],
158 yield dbs.PostcodeSearch(penalty, sdata)
161 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163 """ Build a simple address search for special entries where the
164 housenumber is the main name token.
166 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167 expected_count = sum(t.count for t in hnrs)
169 partials = {t.token: t.addr_count for trange in address
170 for t in self.query.get_partials_list(trange)}
173 # can happen when none of the partials is indexed
176 if expected_count < 8000:
177 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
178 list(partials), lookups.Restrict))
179 elif len(partials) != 1 or list(partials.values())[0] < 10000:
180 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
181 list(partials), lookups.LookupAll))
183 addr_fulls = [t.token for t
184 in self.query.get_tokens(address[0], TokenType.WORD)]
185 if len(addr_fulls) > 5:
187 sdata.lookups.append(
188 dbf.FieldLookup('nameaddress_vector', addr_fulls, lookups.LookupAny))
190 sdata.housenumbers = dbf.WeightedStrings([], [])
191 yield dbs.PlaceSearch(0.05, sdata, expected_count)
194 def build_name_search(self, sdata: dbf.SearchData,
195 name: TokenRange, address: List[TokenRange],
196 is_category: bool) -> Iterator[dbs.AbstractSearch]:
197 """ Build abstract search queries for simple name or address searches.
199 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
200 ranking = self.get_name_ranking(name)
201 name_penalty = ranking.normalize_penalty()
203 sdata.rankings.append(ranking)
204 for penalty, count, lookup in self.yield_lookups(name, address):
205 sdata.lookups = lookup
206 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
209 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
210 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
211 """ Yield all variants how the given name and address should best
212 be searched for. This takes into account how frequent the terms
213 are and tries to find a lookup that optimizes index use.
215 penalty = 0.0 # extra penalty
216 name_partials = {t.token: t for t in self.query.get_partials_list(name)}
218 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
219 addr_tokens = list({t.token for t in addr_partials})
221 exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
223 if (len(name_partials) > 3 or exp_count < 8000):
224 yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
227 addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 50000
228 # Partial term to frequent. Try looking up by rare full names first.
229 name_fulls = self.query.get_tokens(name, TokenType.WORD)
231 fulls_count = sum(t.count for t in name_fulls)
233 if fulls_count < 80000 or addr_count < 50000:
234 yield penalty,fulls_count / (2**len(addr_tokens)), \
235 self.get_full_name_ranking(name_fulls, addr_partials,
236 fulls_count > 30000 / max(1, len(addr_tokens)))
238 # To catch remaining results, lookup by name and address
239 # We only do this if there is a reasonable number of results expected.
240 exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
241 if exp_count < 10000 and addr_count < 20000:
242 penalty += 0.35 * max(1 if name_fulls else 0.1,
243 5 - len(name_partials) - len(addr_tokens))
244 yield penalty, exp_count,\
245 self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
248 def get_name_address_ranking(self, name_tokens: List[int],
249 addr_partials: List[Token]) -> List[dbf.FieldLookup]:
250 """ Create a ranking expression looking up by name and address.
252 lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
254 addr_restrict_tokens = []
255 addr_lookup_tokens = []
256 for t in addr_partials:
257 if t.addr_count > 20000:
258 addr_restrict_tokens.append(t.token)
260 addr_lookup_tokens.append(t.token)
262 if addr_restrict_tokens:
263 lookup.append(dbf.FieldLookup('nameaddress_vector',
264 addr_restrict_tokens, lookups.Restrict))
265 if addr_lookup_tokens:
266 lookup.append(dbf.FieldLookup('nameaddress_vector',
267 addr_lookup_tokens, lookups.LookupAll))
272 def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
273 use_lookup: bool) -> List[dbf.FieldLookup]:
274 """ Create a ranking expression with full name terms and
275 additional address lookup. When 'use_lookup' is true, then
276 address lookups will use the index, when the occurrences are not
279 # At this point drop unindexed partials from the address.
280 # This might yield wrong results, nothing we can do about that.
282 addr_restrict_tokens = []
283 addr_lookup_tokens = [t.token for t in addr_partials if t.is_indexed]
285 addr_restrict_tokens = [t.token for t in addr_partials]
286 addr_lookup_tokens = []
288 return dbf.lookup_by_any_name([t.token for t in name_fulls],
289 addr_restrict_tokens, addr_lookup_tokens)
292 def get_name_ranking(self, trange: TokenRange,
293 db_field: str = 'name_vector') -> dbf.FieldRanking:
294 """ Create a ranking expression for a name term in the given range.
296 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
297 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
298 ranks.sort(key=lambda r: r.penalty)
299 # Fallback, sum of penalty for partials
300 name_partials = self.query.get_partials_list(trange)
301 default = sum(t.penalty for t in name_partials) + 0.2
302 return dbf.FieldRanking(db_field, default, ranks)
305 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
306 """ Create a list of ranking expressions for an address term
307 for the given ranges.
309 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
310 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
311 ranks: List[dbf.RankedTokens] = []
313 while todo: # pylint: disable=too-many-nested-blocks
314 neglen, pos, rank = heapq.heappop(todo)
315 for tlist in self.query.nodes[pos].starting:
316 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
317 if tlist.end < trange.end:
318 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
319 if tlist.ttype == TokenType.PARTIAL:
320 penalty = rank.penalty + chgpenalty \
321 + max(t.penalty for t in tlist.tokens)
322 heapq.heappush(todo, (neglen - 1, tlist.end,
323 dbf.RankedTokens(penalty, rank.tokens)))
325 for t in tlist.tokens:
326 heapq.heappush(todo, (neglen - 1, tlist.end,
327 rank.with_token(t, chgpenalty)))
328 elif tlist.end == trange.end:
329 if tlist.ttype == TokenType.PARTIAL:
330 ranks.append(dbf.RankedTokens(rank.penalty
331 + max(t.penalty for t in tlist.tokens),
334 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
336 # Too many variants, bail out and only add
337 # Worst-case Fallback: sum of penalty of partials
338 name_partials = self.query.get_partials_list(trange)
339 default = sum(t.penalty for t in name_partials) + 0.2
340 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
341 # Bail out of outer loop
345 ranks.sort(key=lambda r: len(r.tokens))
346 default = ranks[0].penalty + 0.3
348 ranks.sort(key=lambda r: r.penalty)
350 return dbf.FieldRanking('nameaddress_vector', default, ranks)
353 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
354 """ Collect the tokens for the non-name search fields in the
357 sdata = dbf.SearchData()
358 sdata.penalty = assignment.penalty
359 if assignment.country:
360 tokens = self.get_country_tokens(assignment.country)
363 sdata.set_strings('countries', tokens)
364 elif self.details.countries:
365 sdata.countries = dbf.WeightedStrings(self.details.countries,
366 [0.0] * len(self.details.countries))
367 if assignment.housenumber:
368 sdata.set_strings('housenumbers',
369 self.query.get_tokens(assignment.housenumber,
370 TokenType.HOUSENUMBER))
371 if assignment.postcode:
372 sdata.set_strings('postcodes',
373 self.query.get_tokens(assignment.postcode,
375 if assignment.qualifier:
376 tokens = self.get_qualifier_tokens(assignment.qualifier)
379 sdata.set_qualifiers(tokens)
380 elif self.details.categories:
381 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
382 [0.0] * len(self.details.categories))
384 if assignment.address:
385 if not assignment.name and assignment.housenumber:
386 # housenumber search: the first item needs to be handled like
387 # a name in ranking or penalties are not comparable with
389 sdata.set_ranking([self.get_name_ranking(assignment.address[0],
390 db_field='nameaddress_vector')]
391 + [self.get_addr_ranking(r) for r in assignment.address[1:]])
393 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
400 def get_country_tokens(self, trange: TokenRange) -> List[Token]:
401 """ Return the list of country tokens for the given range,
402 optionally filtered by the country list from the details
405 tokens = self.query.get_tokens(trange, TokenType.COUNTRY)
406 if self.details.countries:
407 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
412 def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
413 """ Return the list of qualifier tokens for the given range,
414 optionally filtered by the qualifier list from the details
417 tokens = self.query.get_tokens(trange, TokenType.QUALIFIER)
418 if self.details.categories:
419 tokens = [t for t in tokens if t.get_category() in self.details.categories]
424 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
425 """ Collect tokens for near items search or use the categories
426 requested per parameter.
427 Returns None if no category search is requested.
429 if assignment.near_item:
430 tokens: Dict[Tuple[str, str], float] = {}
431 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
432 cat = t.get_category()
433 # The category of a near search will be that of near_item.
434 # Thus, if search is restricted to a category parameter,
435 # the two sets must intersect.
436 if (not self.details.categories or cat in self.details.categories)\
437 and t.penalty < tokens.get(cat, 1000.0):
438 tokens[cat] = t.penalty
439 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
444 PENALTY_WORDCHANGE = {
445 BreakType.START: 0.0,
447 BreakType.PHRASE: 0.0,