]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/tokenizer/legacy_icu_tokenizer.py
use psycopg's SQL quoting where possible
[nominatim.git] / nominatim / tokenizer / legacy_icu_tokenizer.py
1 """
2 Tokenizer implementing normalisation as used before Nominatim 4 but using
3 libICU instead of the PostgreSQL module.
4 """
5 from collections import Counter
6 import itertools
7 import logging
8 import re
9 from textwrap import dedent
10 from pathlib import Path
11
12 from nominatim.db.connection import connect
13 from nominatim.db.properties import set_property, get_property
14 from nominatim.db.utils import CopyBuffer
15 from nominatim.db.sql_preprocessor import SQLPreprocessor
16 from nominatim.tokenizer.icu_rule_loader import ICURuleLoader
17 from nominatim.tokenizer.icu_name_processor import ICUNameProcessor, ICUNameProcessorRules
18
19 DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq"
20 DBCFG_TERM_NORMALIZATION = "tokenizer_term_normalization"
21
22 LOG = logging.getLogger()
23
24 def create(dsn, data_dir):
25     """ Create a new instance of the tokenizer provided by this module.
26     """
27     return LegacyICUTokenizer(dsn, data_dir)
28
29
30 class LegacyICUTokenizer:
31     """ This tokenizer uses libICU to covert names and queries to ASCII.
32         Otherwise it uses the same algorithms and data structures as the
33         normalization routines in Nominatim 3.
34     """
35
36     def __init__(self, dsn, data_dir):
37         self.dsn = dsn
38         self.data_dir = data_dir
39         self.naming_rules = None
40         self.term_normalization = None
41         self.max_word_frequency = None
42
43
44     def init_new_db(self, config, init_db=True):
45         """ Set up a new tokenizer for the database.
46
47             This copies all necessary data in the project directory to make
48             sure the tokenizer remains stable even over updates.
49         """
50         if config.TOKENIZER_CONFIG:
51             cfgfile = Path(config.TOKENIZER_CONFIG)
52         else:
53             cfgfile = config.config_dir / 'legacy_icu_tokenizer.yaml'
54
55         loader = ICURuleLoader(cfgfile)
56         self.naming_rules = ICUNameProcessorRules(loader=loader)
57         self.term_normalization = config.TERM_NORMALIZATION
58         self.max_word_frequency = config.MAX_WORD_FREQUENCY
59
60         self._install_php(config.lib_dir.php)
61         self._save_config(config)
62
63         if init_db:
64             self.update_sql_functions(config)
65             self._init_db_tables(config)
66
67
68     def init_from_project(self):
69         """ Initialise the tokenizer from the project directory.
70         """
71         with connect(self.dsn) as conn:
72             self.naming_rules = ICUNameProcessorRules(conn=conn)
73             self.term_normalization = get_property(conn, DBCFG_TERM_NORMALIZATION)
74             self.max_word_frequency = get_property(conn, DBCFG_MAXWORDFREQ)
75
76
77     def finalize_import(self, config):
78         """ Do any required postprocessing to make the tokenizer data ready
79             for use.
80         """
81         with connect(self.dsn) as conn:
82             sqlp = SQLPreprocessor(conn, config)
83             sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql')
84
85
86     def update_sql_functions(self, config):
87         """ Reimport the SQL functions for this tokenizer.
88         """
89         with connect(self.dsn) as conn:
90             max_word_freq = get_property(conn, DBCFG_MAXWORDFREQ)
91             sqlp = SQLPreprocessor(conn, config)
92             sqlp.run_sql_file(conn, 'tokenizer/legacy_icu_tokenizer.sql',
93                               max_word_freq=max_word_freq)
94
95
96     def check_database(self):
97         """ Check that the tokenizer is set up correctly.
98         """
99         self.init_from_project()
100
101         if self.naming_rules is None:
102             return "Configuration for tokenizer 'legacy_icu' are missing."
103
104         return None
105
106
107     def name_analyzer(self):
108         """ Create a new analyzer for tokenizing names and queries
109             using this tokinzer. Analyzers are context managers and should
110             be used accordingly:
111
112             ```
113             with tokenizer.name_analyzer() as analyzer:
114                 analyser.tokenize()
115             ```
116
117             When used outside the with construct, the caller must ensure to
118             call the close() function before destructing the analyzer.
119
120             Analyzers are not thread-safe. You need to instantiate one per thread.
121         """
122         return LegacyICUNameAnalyzer(self.dsn, ICUNameProcessor(self.naming_rules))
123
124     # pylint: disable=missing-format-attribute
125     def _install_php(self, phpdir):
126         """ Install the php script for the tokenizer.
127         """
128         php_file = self.data_dir / "tokenizer.php"
129         php_file.write_text(dedent("""\
130             <?php
131             @define('CONST_Max_Word_Frequency', {0.max_word_frequency});
132             @define('CONST_Term_Normalization_Rules', "{0.term_normalization}");
133             @define('CONST_Transliteration', "{0.naming_rules.search_rules}");
134             require_once('{1}/tokenizer/legacy_icu_tokenizer.php');
135             """.format(self, phpdir)))
136
137
138     def _save_config(self, config):
139         """ Save the configuration that needs to remain stable for the given
140             database as database properties.
141         """
142         with connect(self.dsn) as conn:
143             self.naming_rules.save_rules(conn)
144
145             set_property(conn, DBCFG_MAXWORDFREQ, config.MAX_WORD_FREQUENCY)
146             set_property(conn, DBCFG_TERM_NORMALIZATION, self.term_normalization)
147
148
149     def _init_db_tables(self, config):
150         """ Set up the word table and fill it with pre-computed word
151             frequencies.
152         """
153         with connect(self.dsn) as conn:
154             sqlp = SQLPreprocessor(conn, config)
155             sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_tables.sql')
156             conn.commit()
157
158             LOG.warning("Precomputing word tokens")
159
160             # get partial words and their frequencies
161             words = Counter()
162             name_proc = ICUNameProcessor(self.naming_rules)
163             with conn.cursor(name="words") as cur:
164                 cur.execute(""" SELECT v, count(*) FROM
165                                   (SELECT svals(name) as v FROM place)x
166                                 WHERE length(v) < 75 GROUP BY v""")
167
168                 for name, cnt in cur:
169                     terms = set()
170                     for word in name_proc.get_variants_ascii(name_proc.get_normalized(name)):
171                         if ' ' in word:
172                             terms.update(word.split())
173                     for term in terms:
174                         words[term] += cnt
175
176             # copy them back into the word table
177             with CopyBuffer() as copystr:
178                 for args in words.items():
179                     copystr.add(*args)
180
181                 with conn.cursor() as cur:
182                     copystr.copy_out(cur, 'word',
183                                      columns=['word_token', 'search_name_count'])
184                     cur.execute("""UPDATE word SET word_id = nextval('seq_word')
185                                    WHERE word_id is null""")
186
187             conn.commit()
188
189
190 class LegacyICUNameAnalyzer:
191     """ The legacy analyzer uses the ICU library for splitting names.
192
193         Each instance opens a connection to the database to request the
194         normalization.
195     """
196
197     def __init__(self, dsn, name_proc):
198         self.conn = connect(dsn).connection
199         self.conn.autocommit = True
200         self.name_processor = name_proc
201
202         self._cache = _TokenCache()
203
204
205     def __enter__(self):
206         return self
207
208
209     def __exit__(self, exc_type, exc_value, traceback):
210         self.close()
211
212
213     def close(self):
214         """ Free all resources used by the analyzer.
215         """
216         if self.conn:
217             self.conn.close()
218             self.conn = None
219
220
221     def get_word_token_info(self, words):
222         """ Return token information for the given list of words.
223             If a word starts with # it is assumed to be a full name
224             otherwise is a partial name.
225
226             The function returns a list of tuples with
227             (original word, word token, word id).
228
229             The function is used for testing and debugging only
230             and not necessarily efficient.
231         """
232         tokens = {}
233         for word in words:
234             if word.startswith('#'):
235                 tokens[word] = ' ' + self.name_processor.get_search_normalized(word[1:])
236             else:
237                 tokens[word] = self.name_processor.get_search_normalized(word)
238
239         with self.conn.cursor() as cur:
240             cur.execute("""SELECT word_token, word_id
241                            FROM word, (SELECT unnest(%s::TEXT[]) as term) t
242                            WHERE word_token = t.term
243                                  and class is null and country_code is null""",
244                         (list(tokens.values()), ))
245             ids = {r[0]: r[1] for r in cur}
246
247         return [(k, v, ids.get(v, None)) for k, v in tokens.items()]
248
249
250     @staticmethod
251     def normalize_postcode(postcode):
252         """ Convert the postcode to a standardized form.
253
254             This function must yield exactly the same result as the SQL function
255             'token_normalized_postcode()'.
256         """
257         return postcode.strip().upper()
258
259
260     def _make_standard_hnr(self, hnr):
261         """ Create a normalised version of a housenumber.
262
263             This function takes minor shortcuts on transliteration.
264         """
265         return self.name_processor.get_search_normalized(hnr)
266
267     def update_postcodes_from_db(self):
268         """ Update postcode tokens in the word table from the location_postcode
269             table.
270         """
271         to_delete = []
272         with self.conn.cursor() as cur:
273             # This finds us the rows in location_postcode and word that are
274             # missing in the other table.
275             cur.execute("""SELECT * FROM
276                             (SELECT pc, word FROM
277                               (SELECT distinct(postcode) as pc FROM location_postcode) p
278                               FULL JOIN
279                               (SELECT word FROM word
280                                 WHERE class ='place' and type = 'postcode') w
281                               ON pc = word) x
282                            WHERE pc is null or word is null""")
283
284             with CopyBuffer() as copystr:
285                 for postcode, word in cur:
286                     if postcode is None:
287                         to_delete.append(word)
288                     else:
289                         copystr.add(
290                             postcode,
291                             ' ' + self.name_processor.get_search_normalized(postcode),
292                             'place', 'postcode', 0)
293
294                 if to_delete:
295                     cur.execute("""DELETE FROM WORD
296                                    WHERE class ='place' and type = 'postcode'
297                                          and word = any(%s)
298                                 """, (to_delete, ))
299
300                 copystr.copy_out(cur, 'word',
301                                  columns=['word', 'word_token', 'class', 'type',
302                                           'search_name_count'])
303
304
305     def update_special_phrases(self, phrases, should_replace):
306         """ Replace the search index for special phrases with the new phrases.
307         """
308         norm_phrases = set(((self.name_processor.get_normalized(p[0]), p[1], p[2], p[3])
309                             for p in phrases))
310
311         with self.conn.cursor() as cur:
312             # Get the old phrases.
313             existing_phrases = set()
314             cur.execute("""SELECT word, class, type, operator FROM word
315                            WHERE class != 'place'
316                                  OR (type != 'house' AND type != 'postcode')""")
317             for label, cls, typ, oper in cur:
318                 existing_phrases.add((label, cls, typ, oper or '-'))
319
320             added = self._add_special_phrases(cur, norm_phrases, existing_phrases)
321             if should_replace:
322                 deleted = self._remove_special_phrases(cur, norm_phrases,
323                                                        existing_phrases)
324             else:
325                 deleted = 0
326
327         LOG.info("Total phrases: %s. Added: %s. Deleted: %s",
328                  len(norm_phrases), added, deleted)
329
330
331     def _add_special_phrases(self, cursor, new_phrases, existing_phrases):
332         """ Add all phrases to the database that are not yet there.
333         """
334         to_add = new_phrases - existing_phrases
335
336         added = 0
337         with CopyBuffer() as copystr:
338             for word, cls, typ, oper in to_add:
339                 term = self.name_processor.get_search_normalized(word)
340                 if term:
341                     copystr.add(word, ' ' + term, cls, typ,
342                                 oper if oper in ('in', 'near') else None, 0)
343                     added += 1
344
345             copystr.copy_out(cursor, 'word',
346                              columns=['word', 'word_token', 'class', 'type',
347                                       'operator', 'search_name_count'])
348
349         return added
350
351
352     @staticmethod
353     def _remove_special_phrases(cursor, new_phrases, existing_phrases):
354         """ Remove all phrases from the databse that are no longer in the
355             new phrase list.
356         """
357         to_delete = existing_phrases - new_phrases
358
359         if to_delete:
360             cursor.execute_values(
361                 """ DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op)
362                     WHERE word = name and class = in_class and type = in_type
363                           and ((op = '-' and operator is null) or op = operator)""",
364                 to_delete)
365
366         return len(to_delete)
367
368
369     def add_country_names(self, country_code, names):
370         """ Add names for the given country to the search index.
371         """
372         word_tokens = set()
373         for name in self._compute_full_names(names):
374             if name:
375                 word_tokens.add(' ' + self.name_processor.get_search_normalized(name))
376
377         with self.conn.cursor() as cur:
378             # Get existing names
379             cur.execute("SELECT word_token FROM word WHERE country_code = %s",
380                         (country_code, ))
381             word_tokens.difference_update((t[0] for t in cur))
382
383             if word_tokens:
384                 cur.execute("""INSERT INTO word (word_id, word_token, country_code,
385                                                  search_name_count)
386                                (SELECT nextval('seq_word'), token, %s, 0
387                                 FROM unnest(%s) as token)
388                             """, (country_code, list(word_tokens)))
389
390
391     def process_place(self, place):
392         """ Determine tokenizer information about the given place.
393
394             Returns a JSON-serialisable structure that will be handed into
395             the database via the token_info field.
396         """
397         token_info = _TokenInfo(self._cache)
398
399         names = place.get('name')
400
401         if names:
402             fulls, partials = self._compute_name_tokens(names)
403
404             token_info.add_names(fulls, partials)
405
406             country_feature = place.get('country_feature')
407             if country_feature and re.fullmatch(r'[A-Za-z][A-Za-z]', country_feature):
408                 self.add_country_names(country_feature.lower(), names)
409
410         address = place.get('address')
411         if address:
412             self._process_place_address(token_info, address)
413
414         return token_info.data
415
416
417     def _process_place_address(self, token_info, address):
418         hnrs = []
419         addr_terms = []
420         for key, value in address.items():
421             if key == 'postcode':
422                 self._add_postcode(value)
423             elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'):
424                 hnrs.append(value)
425             elif key == 'street':
426                 token_info.add_street(*self._compute_name_tokens({'name': value}))
427             elif key == 'place':
428                 token_info.add_place(*self._compute_name_tokens({'name': value}))
429             elif not key.startswith('_') and \
430                  key not in ('country', 'full'):
431                 addr_terms.append((key, *self._compute_name_tokens({'name': value})))
432
433         if hnrs:
434             hnrs = self._split_housenumbers(hnrs)
435             token_info.add_housenumbers(self.conn, [self._make_standard_hnr(n) for n in hnrs])
436
437         if addr_terms:
438             token_info.add_address_terms(addr_terms)
439
440
441     def _compute_name_tokens(self, names):
442         """ Computes the full name and partial name tokens for the given
443             dictionary of names.
444         """
445         full_names = self._compute_full_names(names)
446         full_tokens = set()
447         partial_tokens = set()
448
449         for name in full_names:
450             norm_name = self.name_processor.get_normalized(name)
451             full, part = self._cache.names.get(norm_name, (None, None))
452             if full is None:
453                 variants = self.name_processor.get_variants_ascii(norm_name)
454                 if not variants:
455                     continue
456
457                 with self.conn.cursor() as cur:
458                     cur.execute("SELECT (getorcreate_full_word(%s, %s)).*",
459                                 (norm_name, variants))
460                     full, part = cur.fetchone()
461
462                 self._cache.names[norm_name] = (full, part)
463
464             full_tokens.add(full)
465             partial_tokens.update(part)
466
467         return full_tokens, partial_tokens
468
469
470     @staticmethod
471     def _compute_full_names(names):
472         """ Return the set of all full name word ids to be used with the
473             given dictionary of names.
474         """
475         full_names = set()
476         for name in (n.strip() for ns in names.values() for n in re.split('[;,]', ns)):
477             if name:
478                 full_names.add(name)
479
480                 brace_idx = name.find('(')
481                 if brace_idx >= 0:
482                     full_names.add(name[:brace_idx].strip())
483
484         return full_names
485
486
487     def _add_postcode(self, postcode):
488         """ Make sure the normalized postcode is present in the word table.
489         """
490         if re.search(r'[:,;]', postcode) is None:
491             postcode = self.normalize_postcode(postcode)
492
493             if postcode not in self._cache.postcodes:
494                 term = self.name_processor.get_search_normalized(postcode)
495                 if not term:
496                     return
497
498                 with self.conn.cursor() as cur:
499                     # no word_id needed for postcodes
500                     cur.execute("""INSERT INTO word (word, word_token, class, type,
501                                                      search_name_count)
502                                    (SELECT pc, %s, 'place', 'postcode', 0
503                                     FROM (VALUES (%s)) as v(pc)
504                                     WHERE NOT EXISTS
505                                      (SELECT * FROM word
506                                       WHERE word = pc and class='place' and type='postcode'))
507                                 """, (' ' + term, postcode))
508                 self._cache.postcodes.add(postcode)
509
510
511     @staticmethod
512     def _split_housenumbers(hnrs):
513         if len(hnrs) > 1 or ',' in hnrs[0] or ';' in hnrs[0]:
514             # split numbers if necessary
515             simple_list = []
516             for hnr in hnrs:
517                 simple_list.extend((x.strip() for x in re.split(r'[;,]', hnr)))
518
519             if len(simple_list) > 1:
520                 hnrs = list(set(simple_list))
521             else:
522                 hnrs = simple_list
523
524         return hnrs
525
526
527
528
529 class _TokenInfo:
530     """ Collect token information to be sent back to the database.
531     """
532     def __init__(self, cache):
533         self._cache = cache
534         self.data = {}
535
536     @staticmethod
537     def _mk_array(tokens):
538         return '{%s}' % ','.join((str(s) for s in tokens))
539
540
541     def add_names(self, fulls, partials):
542         """ Adds token information for the normalised names.
543         """
544         self.data['names'] = self._mk_array(itertools.chain(fulls, partials))
545
546
547     def add_housenumbers(self, conn, hnrs):
548         """ Extract housenumber information from a list of normalised
549             housenumbers.
550         """
551         self.data['hnr_tokens'] = self._mk_array(self._cache.get_hnr_tokens(conn, hnrs))
552         self.data['hnr'] = ';'.join(hnrs)
553
554
555     def add_street(self, fulls, _):
556         """ Add addr:street match terms.
557         """
558         if fulls:
559             self.data['street'] = self._mk_array(fulls)
560
561
562     def add_place(self, fulls, partials):
563         """ Add addr:place search and match terms.
564         """
565         if fulls:
566             self.data['place_search'] = self._mk_array(itertools.chain(fulls, partials))
567             self.data['place_match'] = self._mk_array(fulls)
568
569
570     def add_address_terms(self, terms):
571         """ Add additional address terms.
572         """
573         tokens = {}
574
575         for key, fulls, partials in terms:
576             if fulls:
577                 tokens[key] = [self._mk_array(itertools.chain(fulls, partials)),
578                                self._mk_array(fulls)]
579
580         if tokens:
581             self.data['addr'] = tokens
582
583
584 class _TokenCache:
585     """ Cache for token information to avoid repeated database queries.
586
587         This cache is not thread-safe and needs to be instantiated per
588         analyzer.
589     """
590     def __init__(self):
591         self.names = {}
592         self.postcodes = set()
593         self.housenumbers = {}
594
595
596     def get_hnr_tokens(self, conn, terms):
597         """ Get token ids for a list of housenumbers, looking them up in the
598             database if necessary.
599         """
600         tokens = []
601         askdb = []
602
603         for term in terms:
604             token = self.housenumbers.get(term)
605             if token is None:
606                 askdb.append(term)
607             else:
608                 tokens.append(token)
609
610         if askdb:
611             with conn.cursor() as cur:
612                 cur.execute("SELECT nr, getorcreate_hnr_id(nr) FROM unnest(%s) as nr",
613                             (askdb, ))
614                 for term, tid in cur:
615                     self.housenumbers[term] = tid
616                     tokens.append(tid)
617
618         return tokens