1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
20 def wrap_near_search(categories: List[Tuple[str, str]],
21 search: dbs.AbstractSearch) -> dbs.NearSearch:
22 """ Create a new search that wraps the given search in a search
23 for near places of the given category.
25 return dbs.NearSearch(penalty=search.penalty,
26 categories=dbf.WeightedCategories(categories,
27 [0.0] * len(categories)),
31 def build_poi_search(category: List[Tuple[str, str]],
32 countries: Optional[List[str]]) -> dbs.PoiSearch:
33 """ Create a new search for places by the given category, possibly
34 constraint to the given countries.
37 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
39 ccs = dbf.WeightedStrings([], [])
41 class _PoiData(dbf.SearchData):
43 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
46 return dbs.PoiSearch(_PoiData())
50 """ Build the abstract search queries from token assignments.
53 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
55 self.details = details
59 def configured_for_country(self) -> bool:
60 """ Return true if the search details are configured to
61 allow countries in the result.
63 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
64 and self.details.layer_enabled(DataLayer.ADDRESS)
68 def configured_for_postcode(self) -> bool:
69 """ Return true if the search details are configured to
70 allow postcodes in the result.
72 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
73 and self.details.layer_enabled(DataLayer.ADDRESS)
77 def configured_for_housenumbers(self) -> bool:
78 """ Return true if the search details are configured to
79 allow addresses in the result.
81 return self.details.max_rank >= 30 \
82 and self.details.layer_enabled(DataLayer.ADDRESS)
85 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
86 """ Yield all possible abstract searches for the given token assignment.
88 sdata = self.get_search_data(assignment)
92 categories = self.get_search_categories(assignment)
94 if assignment.name is None:
95 if categories and not sdata.postcodes:
96 sdata.qualifiers = categories
98 builder = self.build_poi_search(sdata)
99 elif assignment.housenumber:
100 hnr_tokens = self.query.get_tokens(assignment.housenumber,
101 TokenType.HOUSENUMBER)
102 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
104 builder = self.build_special_search(sdata, assignment.address,
107 builder = self.build_name_search(sdata, assignment.name, assignment.address,
111 penalty = min(categories.penalties)
112 categories.penalties = [p - penalty for p in categories.penalties]
113 for search in builder:
114 yield dbs.NearSearch(penalty, categories, search)
119 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
120 """ Build abstract search query for a simple category search.
121 This kind of search requires an additional geographic constraint.
123 if not sdata.housenumbers \
124 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
125 yield dbs.PoiSearch(sdata)
128 def build_special_search(self, sdata: dbf.SearchData,
129 address: List[TokenRange],
130 is_category: bool) -> Iterator[dbs.AbstractSearch]:
131 """ Build abstract search queries for searches that do not involve
135 # No special searches over qualifiers supported.
138 if sdata.countries and not address and not sdata.postcodes \
139 and self.configured_for_country:
140 yield dbs.CountrySearch(sdata)
142 if sdata.postcodes and (is_category or self.configured_for_postcode):
143 penalty = 0.0 if sdata.countries else 0.1
145 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
146 [t.token for r in address
147 for t in self.query.get_partials_list(r)],
150 yield dbs.PostcodeSearch(penalty, sdata)
153 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
154 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
155 """ Build a simple address search for special entries where the
156 housenumber is the main name token.
158 partial_tokens: List[int] = []
159 for trange in address:
160 partial_tokens.extend(t.token for t in self.query.get_partials_list(trange))
162 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any'),
163 dbf.FieldLookup('nameaddress_vector', partial_tokens, 'lookup_all')
165 sdata.housenumbers = dbf.WeightedStrings([], [])
166 yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
169 def build_name_search(self, sdata: dbf.SearchData,
170 name: TokenRange, address: List[TokenRange],
171 is_category: bool) -> Iterator[dbs.AbstractSearch]:
172 """ Build abstract search queries for simple name or address searches.
174 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
175 ranking = self.get_name_ranking(name)
176 name_penalty = ranking.normalize_penalty()
178 sdata.rankings.append(ranking)
179 for penalty, count, lookup in self.yield_lookups(name, address):
180 sdata.lookups = lookup
181 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
184 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
185 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
186 """ Yield all variants how the given name and address should best
187 be searched for. This takes into account how frequent the terms
188 are and tries to find a lookup that optimizes index use.
190 penalty = 0.0 # extra penalty
191 name_partials = self.query.get_partials_list(name)
192 name_tokens = [t.token for t in name_partials]
194 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
195 addr_tokens = [t.token for t in addr_partials]
197 partials_indexed = all(t.is_indexed for t in name_partials) \
198 and all(t.is_indexed for t in addr_partials)
199 exp_count = min(t.count for t in name_partials)
201 if (len(name_partials) > 3 or exp_count < 1000) and partials_indexed:
202 yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
205 exp_count = min(exp_count, min(t.count for t in addr_partials)) \
206 if addr_partials else exp_count
207 if exp_count < 1000 and partials_indexed:
208 # Lookup by address partials and restrict results through name terms.
209 # Give this a small penalty because lookups in the address index are
211 yield penalty + exp_count/5000, exp_count,\
212 dbf.lookup_by_addr(name_tokens, addr_tokens)
215 # Partial term to frequent. Try looking up by rare full names first.
216 name_fulls = self.query.get_tokens(name, TokenType.WORD)
217 rare_names = list(filter(lambda t: t.count < 10000, name_fulls))
218 # At this point drop unindexed partials from the address.
219 # This might yield wrong results, nothing we can do about that.
220 if not partials_indexed:
221 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
222 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
224 # Any of the full names applies with all of the partials from the address
225 yield penalty, sum(t.count for t in rare_names),\
226 dbf.lookup_by_any_name([t.token for t in rare_names], addr_tokens)
228 # To catch remaining results, lookup by name and address
229 # We only do this if there is a reasonable number of results expected.
230 if exp_count < 10000:
231 if all(t.is_indexed for t in name_partials):
232 lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
234 # we don't have the partials, try with the non-rare names
235 non_rare_names = [t.token for t in name_fulls if t.count >= 10000]
236 if not non_rare_names:
238 lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
240 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
241 penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
242 if len(rare_names) == len(name_fulls):
243 # if there already was a search for all full tokens,
244 # avoid this if anything has been found
246 yield penalty, exp_count, lookup
249 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
250 """ Create a ranking expression for a name term in the given range.
252 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
253 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
254 ranks.sort(key=lambda r: r.penalty)
255 # Fallback, sum of penalty for partials
256 name_partials = self.query.get_partials_list(trange)
257 default = sum(t.penalty for t in name_partials) + 0.2
258 return dbf.FieldRanking('name_vector', default, ranks)
261 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
262 """ Create a list of ranking expressions for an address term
263 for the given ranges.
265 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
266 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
267 ranks: List[dbf.RankedTokens] = []
269 while todo: # pylint: disable=too-many-nested-blocks
270 neglen, pos, rank = heapq.heappop(todo)
271 for tlist in self.query.nodes[pos].starting:
272 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
273 if tlist.end < trange.end:
274 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
275 if tlist.ttype == TokenType.PARTIAL:
276 penalty = rank.penalty + chgpenalty \
277 + max(t.penalty for t in tlist.tokens)
278 heapq.heappush(todo, (neglen - 1, tlist.end,
279 dbf.RankedTokens(penalty, rank.tokens)))
281 for t in tlist.tokens:
282 heapq.heappush(todo, (neglen - 1, tlist.end,
283 rank.with_token(t, chgpenalty)))
284 elif tlist.end == trange.end:
285 if tlist.ttype == TokenType.PARTIAL:
286 ranks.append(dbf.RankedTokens(rank.penalty
287 + max(t.penalty for t in tlist.tokens),
290 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
292 # Too many variants, bail out and only add
293 # Worst-case Fallback: sum of penalty of partials
294 name_partials = self.query.get_partials_list(trange)
295 default = sum(t.penalty for t in name_partials) + 0.2
296 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
297 # Bail out of outer loop
301 ranks.sort(key=lambda r: len(r.tokens))
302 default = ranks[0].penalty + 0.3
304 ranks.sort(key=lambda r: r.penalty)
306 return dbf.FieldRanking('nameaddress_vector', default, ranks)
309 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
310 """ Collect the tokens for the non-name search fields in the
313 sdata = dbf.SearchData()
314 sdata.penalty = assignment.penalty
315 if assignment.country:
316 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
317 if self.details.countries:
318 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
321 sdata.set_strings('countries', tokens)
322 elif self.details.countries:
323 sdata.countries = dbf.WeightedStrings(self.details.countries,
324 [0.0] * len(self.details.countries))
325 if assignment.housenumber:
326 sdata.set_strings('housenumbers',
327 self.query.get_tokens(assignment.housenumber,
328 TokenType.HOUSENUMBER))
329 if assignment.postcode:
330 sdata.set_strings('postcodes',
331 self.query.get_tokens(assignment.postcode,
333 if assignment.qualifier:
334 sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
335 TokenType.QUALIFIER))
337 if assignment.address:
338 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
345 def get_search_categories(self,
346 assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
347 """ Collect tokens for category search or use the categories
348 requested per parameter.
349 Returns None if no category search is requested.
351 if assignment.category:
352 tokens = [t for t in self.query.get_tokens(assignment.category,
354 if not self.details.categories
355 or t.get_category() in self.details.categories]
356 return dbf.WeightedCategories([t.get_category() for t in tokens],
357 [t.penalty for t in tokens])
359 if self.details.categories:
360 return dbf.WeightedCategories(self.details.categories,
361 [0.0] * len(self.details.categories))
366 PENALTY_WORDCHANGE = {
367 BreakType.START: 0.0,
369 BreakType.PHRASE: 0.0,