]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/api/search/db_search_builder.py
Fixed cosmetic issues
[nominatim.git] / nominatim / api / search / db_search_builder.py
1 # SPDX-License-Identifier: GPL-3.0-or-later
2 #
3 # This file is part of Nominatim. (https://nominatim.org)
4 #
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
7 """
8 Convertion from token assignment to an abstract DB search.
9 """
10 from typing import Optional, List, Tuple, Iterator
11 import heapq
12
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18
19
20 def wrap_near_search(categories: List[Tuple[str, str]],
21                      search: dbs.AbstractSearch) -> dbs.NearSearch:
22     """ Create a new search that wraps the given search in a search
23         for near places of the given category.
24     """
25     return dbs.NearSearch(penalty=search.penalty,
26                           categories=dbf.WeightedCategories(categories,
27                                                             [0.0] * len(categories)),
28                           search=search)
29
30
31 def build_poi_search(category: List[Tuple[str, str]],
32                      countries: Optional[List[str]]) -> dbs.PoiSearch:
33     """ Create a new search for places by the given category, possibly
34         constraint to the given countries.
35     """
36     if countries:
37         ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
38     else:
39         ccs = dbf.WeightedStrings([], [])
40
41     class _PoiData(dbf.SearchData):
42         penalty = 0.0
43         qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
44         countries=ccs
45
46     return dbs.PoiSearch(_PoiData())
47
48
49 class SearchBuilder:
50     """ Build the abstract search queries from token assignments.
51     """
52
53     def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
54         self.query = query
55         self.details = details
56
57
58     @property
59     def configured_for_country(self) -> bool:
60         """ Return true if the search details are configured to
61             allow countries in the result.
62         """
63         return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
64                and self.details.layer_enabled(DataLayer.ADDRESS)
65
66
67     @property
68     def configured_for_postcode(self) -> bool:
69         """ Return true if the search details are configured to
70             allow postcodes in the result.
71         """
72         return self.details.min_rank <= 5 and self.details.max_rank >= 11\
73                and self.details.layer_enabled(DataLayer.ADDRESS)
74
75
76     @property
77     def configured_for_housenumbers(self) -> bool:
78         """ Return true if the search details are configured to
79             allow addresses in the result.
80         """
81         return self.details.max_rank >= 30 \
82                and self.details.layer_enabled(DataLayer.ADDRESS)
83
84
85     def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
86         """ Yield all possible abstract searches for the given token assignment.
87         """
88         sdata = self.get_search_data(assignment)
89         if sdata is None:
90             return
91
92         categories = self.get_search_categories(assignment)
93
94         if assignment.name is None:
95             if categories and not sdata.postcodes:
96                 sdata.qualifiers = categories
97                 categories = None
98                 builder = self.build_poi_search(sdata)
99             elif assignment.housenumber:
100                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
101                                                    TokenType.HOUSENUMBER)
102                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
103             else:
104                 builder = self.build_special_search(sdata, assignment.address,
105                                                     bool(categories))
106         else:
107             builder = self.build_name_search(sdata, assignment.name, assignment.address,
108                                              bool(categories))
109
110         if categories:
111             penalty = min(categories.penalties)
112             categories.penalties = [p - penalty for p in categories.penalties]
113             for search in builder:
114                 yield dbs.NearSearch(penalty, categories, search)
115         else:
116             yield from builder
117
118
119     def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
120         """ Build abstract search query for a simple category search.
121             This kind of search requires an additional geographic constraint.
122         """
123         if not sdata.housenumbers \
124            and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
125             yield dbs.PoiSearch(sdata)
126
127
128     def build_special_search(self, sdata: dbf.SearchData,
129                              address: List[TokenRange],
130                              is_category: bool) -> Iterator[dbs.AbstractSearch]:
131         """ Build abstract search queries for searches that do not involve
132             a named place.
133         """
134         if sdata.qualifiers:
135             # No special searches over qualifiers supported.
136             return
137
138         if sdata.countries and not address and not sdata.postcodes \
139            and self.configured_for_country:
140             yield dbs.CountrySearch(sdata)
141
142         if sdata.postcodes and (is_category or self.configured_for_postcode):
143             penalty = 0.0 if sdata.countries else 0.1
144             if address:
145                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
146                                                  [t.token for r in address
147                                                   for t in self.query.get_partials_list(r)],
148                                                  'restrict')]
149                 penalty += 0.2
150             yield dbs.PostcodeSearch(penalty, sdata)
151
152
153     def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
154                                  address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
155         """ Build a simple address search for special entries where the
156             housenumber is the main name token.
157         """
158         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
159
160         partials = [t for trange in address
161                        for t in self.query.get_partials_list(trange)]
162
163         if len(partials) != 1 or partials[0].count < 10000:
164             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
165                                                  [t.token for t in partials], 'lookup_all'))
166         else:
167             sdata.lookups.append(
168                 dbf.FieldLookup('nameaddress_vector',
169                                 [t.token for t
170                                  in self.query.get_tokens(address[0], TokenType.WORD)],
171                                 'lookup_any'))
172
173         sdata.housenumbers = dbf.WeightedStrings([], [])
174         yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
175
176
177     def build_name_search(self, sdata: dbf.SearchData,
178                           name: TokenRange, address: List[TokenRange],
179                           is_category: bool) -> Iterator[dbs.AbstractSearch]:
180         """ Build abstract search queries for simple name or address searches.
181         """
182         if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
183             ranking = self.get_name_ranking(name)
184             name_penalty = ranking.normalize_penalty()
185             if ranking.rankings:
186                 sdata.rankings.append(ranking)
187             for penalty, count, lookup in self.yield_lookups(name, address):
188                 sdata.lookups = lookup
189                 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
190
191
192     def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
193                           -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
194         """ Yield all variants how the given name and address should best
195             be searched for. This takes into account how frequent the terms
196             are and tries to find a lookup that optimizes index use.
197         """
198         penalty = 0.0 # extra penalty
199         name_partials = self.query.get_partials_list(name)
200         name_tokens = [t.token for t in name_partials]
201
202         addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
203         addr_tokens = [t.token for t in addr_partials]
204
205         partials_indexed = all(t.is_indexed for t in name_partials) \
206                            and all(t.is_indexed for t in addr_partials)
207         exp_count = min(t.count for t in name_partials)
208
209         if (len(name_partials) > 3 or exp_count < 1000) and partials_indexed:
210             yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
211             return
212
213         exp_count = min(exp_count, min(t.count for t in addr_partials)) \
214                     if addr_partials else exp_count
215         if exp_count < 1000 and partials_indexed:
216             # Lookup by address partials and restrict results through name terms.
217             # Give this a small penalty because lookups in the address index are
218             # more expensive
219             yield penalty + exp_count/5000, exp_count,\
220                   dbf.lookup_by_addr(name_tokens, addr_tokens)
221             return
222
223         # Partial term to frequent. Try looking up by rare full names first.
224         name_fulls = self.query.get_tokens(name, TokenType.WORD)
225         rare_names = list(filter(lambda t: t.count < 10000, name_fulls))
226         # At this point drop unindexed partials from the address.
227         # This might yield wrong results, nothing we can do about that.
228         if not partials_indexed:
229             addr_tokens = [t.token for t in addr_partials if t.is_indexed]
230             penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
231         if rare_names:
232             # Any of the full names applies with all of the partials from the address
233             yield penalty, sum(t.count for t in rare_names),\
234                   dbf.lookup_by_any_name([t.token for t in rare_names], addr_tokens)
235
236         # To catch remaining results, lookup by name and address
237         # We only do this if there is a reasonable number of results expected.
238         if exp_count < 10000:
239             if all(t.is_indexed for t in name_partials):
240                 lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
241             else:
242                 # we don't have the partials, try with the non-rare names
243                 non_rare_names = [t.token for t in name_fulls if t.count >= 10000]
244                 if not non_rare_names:
245                     return
246                 lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
247             if addr_tokens:
248                 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
249             penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
250             if len(rare_names) == len(name_fulls):
251                 # if there already was a search for all full tokens,
252                 # avoid this if anything has been found
253                 penalty += 0.25
254             yield penalty, exp_count, lookup
255
256
257     def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
258         """ Create a ranking expression for a name term in the given range.
259         """
260         name_fulls = self.query.get_tokens(trange, TokenType.WORD)
261         ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
262         ranks.sort(key=lambda r: r.penalty)
263         # Fallback, sum of penalty for partials
264         name_partials = self.query.get_partials_list(trange)
265         default = sum(t.penalty for t in name_partials) + 0.2
266         return dbf.FieldRanking('name_vector', default, ranks)
267
268
269     def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
270         """ Create a list of ranking expressions for an address term
271             for the given ranges.
272         """
273         todo: List[Tuple[int, int, dbf.RankedTokens]] = []
274         heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
275         ranks: List[dbf.RankedTokens] = []
276
277         while todo: # pylint: disable=too-many-nested-blocks
278             neglen, pos, rank = heapq.heappop(todo)
279             for tlist in self.query.nodes[pos].starting:
280                 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
281                     if tlist.end < trange.end:
282                         chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
283                         if tlist.ttype == TokenType.PARTIAL:
284                             penalty = rank.penalty + chgpenalty \
285                                       + max(t.penalty for t in tlist.tokens)
286                             heapq.heappush(todo, (neglen - 1, tlist.end,
287                                                   dbf.RankedTokens(penalty, rank.tokens)))
288                         else:
289                             for t in tlist.tokens:
290                                 heapq.heappush(todo, (neglen - 1, tlist.end,
291                                                       rank.with_token(t, chgpenalty)))
292                     elif tlist.end == trange.end:
293                         if tlist.ttype == TokenType.PARTIAL:
294                             ranks.append(dbf.RankedTokens(rank.penalty
295                                                           + max(t.penalty for t in tlist.tokens),
296                                                           rank.tokens))
297                         else:
298                             ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
299                         if len(ranks) >= 10:
300                             # Too many variants, bail out and only add
301                             # Worst-case Fallback: sum of penalty of partials
302                             name_partials = self.query.get_partials_list(trange)
303                             default = sum(t.penalty for t in name_partials) + 0.2
304                             ranks.append(dbf.RankedTokens(rank.penalty + default, []))
305                             # Bail out of outer loop
306                             todo.clear()
307                             break
308
309         ranks.sort(key=lambda r: len(r.tokens))
310         default = ranks[0].penalty + 0.3
311         del ranks[0]
312         ranks.sort(key=lambda r: r.penalty)
313
314         return dbf.FieldRanking('nameaddress_vector', default, ranks)
315
316
317     def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
318         """ Collect the tokens for the non-name search fields in the
319             assignment.
320         """
321         sdata = dbf.SearchData()
322         sdata.penalty = assignment.penalty
323         if assignment.country:
324             tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
325             if self.details.countries:
326                 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
327                 if not tokens:
328                     return None
329             sdata.set_strings('countries', tokens)
330         elif self.details.countries:
331             sdata.countries = dbf.WeightedStrings(self.details.countries,
332                                                   [0.0] * len(self.details.countries))
333         if assignment.housenumber:
334             sdata.set_strings('housenumbers',
335                               self.query.get_tokens(assignment.housenumber,
336                                                     TokenType.HOUSENUMBER))
337         if assignment.postcode:
338             sdata.set_strings('postcodes',
339                               self.query.get_tokens(assignment.postcode,
340                                                     TokenType.POSTCODE))
341         if assignment.qualifier:
342             sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
343                                                        TokenType.QUALIFIER))
344
345         if assignment.address:
346             sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
347         else:
348             sdata.rankings = []
349
350         return sdata
351
352
353     def get_search_categories(self,
354                               assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
355         """ Collect tokens for category search or use the categories
356             requested per parameter.
357             Returns None if no category search is requested.
358         """
359         if assignment.category:
360             tokens = [t for t in self.query.get_tokens(assignment.category,
361                                                        TokenType.CATEGORY)
362                       if not self.details.categories
363                          or t.get_category() in self.details.categories]
364             return dbf.WeightedCategories([t.get_category() for t in tokens],
365                                           [t.penalty for t in tokens])
366
367         if self.details.categories:
368             return dbf.WeightedCategories(self.details.categories,
369                                           [0.0] * len(self.details.categories))
370
371         return None
372
373
374 PENALTY_WORDCHANGE = {
375     BreakType.START: 0.0,
376     BreakType.END: 0.0,
377     BreakType.PHRASE: 0.0,
378     BreakType.WORD: 0.1,
379     BreakType.PART: 0.2,
380     BreakType.TOKEN: 0.4
381 }