1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 import nominatim.api.search.db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 near_items = self.get_near_items(assignment)
94 if near_items is not None and not near_items:
95 return # impossible compbination of near items and category parameter
97 if assignment.name is None:
98 if near_items and not sdata.postcodes:
99 sdata.qualifiers = near_items
101 builder = self.build_poi_search(sdata)
102 elif assignment.housenumber:
103 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104 TokenType.HOUSENUMBER)
105 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
107 builder = self.build_special_search(sdata, assignment.address,
110 builder = self.build_name_search(sdata, assignment.name, assignment.address,
114 penalty = min(near_items.penalties)
115 near_items.penalties = [p - penalty for p in near_items.penalties]
116 for search in builder:
117 search_penalty = search.penalty
119 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
122 for search in builder:
123 search.penalty += assignment.penalty
127 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128 """ Build abstract search query for a simple category search.
129 This kind of search requires an additional geographic constraint.
131 if not sdata.housenumbers \
132 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133 yield dbs.PoiSearch(sdata)
136 def build_special_search(self, sdata: dbf.SearchData,
137 address: List[TokenRange],
138 is_category: bool) -> Iterator[dbs.AbstractSearch]:
139 """ Build abstract search queries for searches that do not involve
143 # No special searches over qualifiers supported.
146 if sdata.countries and not address and not sdata.postcodes \
147 and self.configured_for_country:
148 yield dbs.CountrySearch(sdata)
150 if sdata.postcodes and (is_category or self.configured_for_postcode):
151 penalty = 0.0 if sdata.countries else 0.1
153 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154 [t.token for r in address
155 for t in self.query.get_partials_list(r)],
158 yield dbs.PostcodeSearch(penalty, sdata)
161 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163 """ Build a simple address search for special entries where the
164 housenumber is the main name token.
166 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167 expected_count = sum(t.count for t in hnrs)
169 partials = {t.token: t.count for trange in address
170 for t in self.query.get_partials_list(trange)}
172 if expected_count < 8000:
173 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174 list(partials), lookups.Restrict))
175 elif len(partials) != 1 or list(partials.values())[0] < 10000:
176 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177 list(partials), lookups.LookupAll))
179 sdata.lookups.append(
180 dbf.FieldLookup('nameaddress_vector',
182 in self.query.get_tokens(address[0], TokenType.WORD)],
185 sdata.housenumbers = dbf.WeightedStrings([], [])
186 yield dbs.PlaceSearch(0.05, sdata, expected_count)
189 def build_name_search(self, sdata: dbf.SearchData,
190 name: TokenRange, address: List[TokenRange],
191 is_category: bool) -> Iterator[dbs.AbstractSearch]:
192 """ Build abstract search queries for simple name or address searches.
194 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
195 ranking = self.get_name_ranking(name)
196 name_penalty = ranking.normalize_penalty()
198 sdata.rankings.append(ranking)
199 for penalty, count, lookup in self.yield_lookups(name, address):
200 sdata.lookups = lookup
201 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
204 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
205 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
206 """ Yield all variants how the given name and address should best
207 be searched for. This takes into account how frequent the terms
208 are and tries to find a lookup that optimizes index use.
210 penalty = 0.0 # extra penalty
211 name_partials = {t.token: t for t in self.query.get_partials_list(name)}
213 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
214 addr_tokens = list({t.token for t in addr_partials})
216 partials_indexed = all(t.is_indexed for t in name_partials.values()) \
217 and all(t.is_indexed for t in addr_partials)
218 exp_count = min(t.count for t in name_partials.values()) / (2**(len(name_partials) - 1))
220 if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
221 yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
224 # Partial term to frequent. Try looking up by rare full names first.
225 name_fulls = self.query.get_tokens(name, TokenType.WORD)
227 fulls_count = sum(t.count for t in name_fulls)
228 # At this point drop unindexed partials from the address.
229 # This might yield wrong results, nothing we can do about that.
230 if not partials_indexed:
231 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
232 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
233 # Any of the full names applies with all of the partials from the address
234 yield penalty, fulls_count / (2**len(addr_tokens)),\
235 dbf.lookup_by_any_name([t.token for t in name_fulls],
236 addr_tokens, fulls_count > 10000)
238 # To catch remaining results, lookup by name and address
239 # We only do this if there is a reasonable number of results expected.
240 exp_count = exp_count / (2**len(addr_tokens)) if addr_tokens else exp_count
241 if exp_count < 10000 and all(t.is_indexed for t in name_partials.values()):
242 lookup = [dbf.FieldLookup('name_vector', list(name_partials.keys()), lookups.LookupAll)]
244 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
245 penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
246 yield penalty, exp_count, lookup
249 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
250 """ Create a ranking expression for a name term in the given range.
252 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
253 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
254 ranks.sort(key=lambda r: r.penalty)
255 # Fallback, sum of penalty for partials
256 name_partials = self.query.get_partials_list(trange)
257 default = sum(t.penalty for t in name_partials) + 0.2
258 return dbf.FieldRanking('name_vector', default, ranks)
261 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
262 """ Create a list of ranking expressions for an address term
263 for the given ranges.
265 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
266 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
267 ranks: List[dbf.RankedTokens] = []
269 while todo: # pylint: disable=too-many-nested-blocks
270 neglen, pos, rank = heapq.heappop(todo)
271 for tlist in self.query.nodes[pos].starting:
272 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
273 if tlist.end < trange.end:
274 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
275 if tlist.ttype == TokenType.PARTIAL:
276 penalty = rank.penalty + chgpenalty \
277 + max(t.penalty for t in tlist.tokens)
278 heapq.heappush(todo, (neglen - 1, tlist.end,
279 dbf.RankedTokens(penalty, rank.tokens)))
281 for t in tlist.tokens:
282 heapq.heappush(todo, (neglen - 1, tlist.end,
283 rank.with_token(t, chgpenalty)))
284 elif tlist.end == trange.end:
285 if tlist.ttype == TokenType.PARTIAL:
286 ranks.append(dbf.RankedTokens(rank.penalty
287 + max(t.penalty for t in tlist.tokens),
290 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
292 # Too many variants, bail out and only add
293 # Worst-case Fallback: sum of penalty of partials
294 name_partials = self.query.get_partials_list(trange)
295 default = sum(t.penalty for t in name_partials) + 0.2
296 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
297 # Bail out of outer loop
301 ranks.sort(key=lambda r: len(r.tokens))
302 default = ranks[0].penalty + 0.3
304 ranks.sort(key=lambda r: r.penalty)
306 return dbf.FieldRanking('nameaddress_vector', default, ranks)
309 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
310 """ Collect the tokens for the non-name search fields in the
313 sdata = dbf.SearchData()
314 sdata.penalty = assignment.penalty
315 if assignment.country:
316 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
317 if self.details.countries:
318 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
321 sdata.set_strings('countries', tokens)
322 elif self.details.countries:
323 sdata.countries = dbf.WeightedStrings(self.details.countries,
324 [0.0] * len(self.details.countries))
325 if assignment.housenumber:
326 sdata.set_strings('housenumbers',
327 self.query.get_tokens(assignment.housenumber,
328 TokenType.HOUSENUMBER))
329 if assignment.postcode:
330 sdata.set_strings('postcodes',
331 self.query.get_tokens(assignment.postcode,
333 if assignment.qualifier:
334 tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
335 if self.details.categories:
336 tokens = [t for t in tokens if t.get_category() in self.details.categories]
339 sdata.set_qualifiers(tokens)
340 elif self.details.categories:
341 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
342 [0.0] * len(self.details.categories))
344 if assignment.address:
345 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
352 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
353 """ Collect tokens for near items search or use the categories
354 requested per parameter.
355 Returns None if no category search is requested.
357 if assignment.near_item:
358 tokens: Dict[Tuple[str, str], float] = {}
359 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
360 cat = t.get_category()
361 # The category of a near search will be that of near_item.
362 # Thus, if search is restricted to a category parameter,
363 # the two sets must intersect.
364 if (not self.details.categories or cat in self.details.categories)\
365 and t.penalty < tokens.get(cat, 1000.0):
366 tokens[cat] = t.penalty
367 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
372 PENALTY_WORDCHANGE = {
373 BreakType.START: 0.0,
375 BreakType.PHRASE: 0.0,