1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 import nominatim.api.search.db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 near_items = self.get_near_items(assignment)
94 if near_items is not None and not near_items:
95 return # impossible compbination of near items and category parameter
97 if assignment.name is None:
98 if near_items and not sdata.postcodes:
99 sdata.qualifiers = near_items
101 builder = self.build_poi_search(sdata)
102 elif assignment.housenumber:
103 hnr_tokens = self.query.get_tokens(assignment.housenumber,
104 TokenType.HOUSENUMBER)
105 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
107 builder = self.build_special_search(sdata, assignment.address,
110 builder = self.build_name_search(sdata, assignment.name, assignment.address,
114 penalty = min(near_items.penalties)
115 near_items.penalties = [p - penalty for p in near_items.penalties]
116 for search in builder:
117 search_penalty = search.penalty
119 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
122 for search in builder:
123 search.penalty += assignment.penalty
127 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
128 """ Build abstract search query for a simple category search.
129 This kind of search requires an additional geographic constraint.
131 if not sdata.housenumbers \
132 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
133 yield dbs.PoiSearch(sdata)
136 def build_special_search(self, sdata: dbf.SearchData,
137 address: List[TokenRange],
138 is_category: bool) -> Iterator[dbs.AbstractSearch]:
139 """ Build abstract search queries for searches that do not involve
143 # No special searches over qualifiers supported.
146 if sdata.countries and not address and not sdata.postcodes \
147 and self.configured_for_country:
148 yield dbs.CountrySearch(sdata)
150 if sdata.postcodes and (is_category or self.configured_for_postcode):
151 penalty = 0.0 if sdata.countries else 0.1
153 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
154 [t.token for r in address
155 for t in self.query.get_partials_list(r)],
158 yield dbs.PostcodeSearch(penalty, sdata)
161 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
162 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
163 """ Build a simple address search for special entries where the
164 housenumber is the main name token.
166 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
167 expected_count = sum(t.count for t in hnrs)
169 partials = [t for trange in address
170 for t in self.query.get_partials_list(trange)]
172 if expected_count < 8000:
173 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
174 [t.token for t in partials], lookups.Restrict))
175 elif len(partials) != 1 or partials[0].count < 10000:
176 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
177 [t.token for t in partials], lookups.LookupAll))
179 sdata.lookups.append(
180 dbf.FieldLookup('nameaddress_vector',
182 in self.query.get_tokens(address[0], TokenType.WORD)],
185 sdata.housenumbers = dbf.WeightedStrings([], [])
186 yield dbs.PlaceSearch(0.05, sdata, expected_count)
189 def build_name_search(self, sdata: dbf.SearchData,
190 name: TokenRange, address: List[TokenRange],
191 is_category: bool) -> Iterator[dbs.AbstractSearch]:
192 """ Build abstract search queries for simple name or address searches.
194 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
195 ranking = self.get_name_ranking(name)
196 name_penalty = ranking.normalize_penalty()
198 sdata.rankings.append(ranking)
199 for penalty, count, lookup in self.yield_lookups(name, address):
200 sdata.lookups = lookup
201 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
204 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
205 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
206 """ Yield all variants how the given name and address should best
207 be searched for. This takes into account how frequent the terms
208 are and tries to find a lookup that optimizes index use.
210 penalty = 0.0 # extra penalty
211 name_partials = self.query.get_partials_list(name)
212 name_tokens = [t.token for t in name_partials]
214 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
215 addr_tokens = [t.token for t in addr_partials]
217 partials_indexed = all(t.is_indexed for t in name_partials) \
218 and all(t.is_indexed for t in addr_partials)
219 exp_count = min(t.count for t in name_partials) / (2**(len(name_partials) - 1))
221 if (len(name_partials) > 3 or exp_count < 8000) and partials_indexed:
222 yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
225 # Partial term to frequent. Try looking up by rare full names first.
226 name_fulls = self.query.get_tokens(name, TokenType.WORD)
228 fulls_count = sum(t.count for t in name_fulls)
229 # At this point drop unindexed partials from the address.
230 # This might yield wrong results, nothing we can do about that.
231 if not partials_indexed:
232 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
233 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
234 # Any of the full names applies with all of the partials from the address
235 yield penalty, fulls_count / (2**len(addr_partials)),\
236 dbf.lookup_by_any_name([t.token for t in name_fulls],
237 addr_tokens, fulls_count > 10000)
239 # To catch remaining results, lookup by name and address
240 # We only do this if there is a reasonable number of results expected.
241 exp_count = exp_count / (2**len(addr_partials)) if addr_partials else exp_count
242 if exp_count < 10000 and all(t.is_indexed for t in name_partials):
243 lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
245 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, lookups.LookupAll))
246 penalty += 0.35 * max(0, 5 - len(name_partials) - len(addr_tokens))
247 yield penalty, exp_count, lookup
250 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
251 """ Create a ranking expression for a name term in the given range.
253 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
254 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
255 ranks.sort(key=lambda r: r.penalty)
256 # Fallback, sum of penalty for partials
257 name_partials = self.query.get_partials_list(trange)
258 default = sum(t.penalty for t in name_partials) + 0.2
259 return dbf.FieldRanking('name_vector', default, ranks)
262 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
263 """ Create a list of ranking expressions for an address term
264 for the given ranges.
266 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
267 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
268 ranks: List[dbf.RankedTokens] = []
270 while todo: # pylint: disable=too-many-nested-blocks
271 neglen, pos, rank = heapq.heappop(todo)
272 for tlist in self.query.nodes[pos].starting:
273 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
274 if tlist.end < trange.end:
275 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
276 if tlist.ttype == TokenType.PARTIAL:
277 penalty = rank.penalty + chgpenalty \
278 + max(t.penalty for t in tlist.tokens)
279 heapq.heappush(todo, (neglen - 1, tlist.end,
280 dbf.RankedTokens(penalty, rank.tokens)))
282 for t in tlist.tokens:
283 heapq.heappush(todo, (neglen - 1, tlist.end,
284 rank.with_token(t, chgpenalty)))
285 elif tlist.end == trange.end:
286 if tlist.ttype == TokenType.PARTIAL:
287 ranks.append(dbf.RankedTokens(rank.penalty
288 + max(t.penalty for t in tlist.tokens),
291 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
293 # Too many variants, bail out and only add
294 # Worst-case Fallback: sum of penalty of partials
295 name_partials = self.query.get_partials_list(trange)
296 default = sum(t.penalty for t in name_partials) + 0.2
297 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
298 # Bail out of outer loop
302 ranks.sort(key=lambda r: len(r.tokens))
303 default = ranks[0].penalty + 0.3
305 ranks.sort(key=lambda r: r.penalty)
307 return dbf.FieldRanking('nameaddress_vector', default, ranks)
310 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
311 """ Collect the tokens for the non-name search fields in the
314 sdata = dbf.SearchData()
315 sdata.penalty = assignment.penalty
316 if assignment.country:
317 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
318 if self.details.countries:
319 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
322 sdata.set_strings('countries', tokens)
323 elif self.details.countries:
324 sdata.countries = dbf.WeightedStrings(self.details.countries,
325 [0.0] * len(self.details.countries))
326 if assignment.housenumber:
327 sdata.set_strings('housenumbers',
328 self.query.get_tokens(assignment.housenumber,
329 TokenType.HOUSENUMBER))
330 if assignment.postcode:
331 sdata.set_strings('postcodes',
332 self.query.get_tokens(assignment.postcode,
334 if assignment.qualifier:
335 tokens = self.query.get_tokens(assignment.qualifier, TokenType.QUALIFIER)
336 if self.details.categories:
337 tokens = [t for t in tokens if t.get_category() in self.details.categories]
340 sdata.set_qualifiers(tokens)
341 elif self.details.categories:
342 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
343 [0.0] * len(self.details.categories))
345 if assignment.address:
346 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
353 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
354 """ Collect tokens for near items search or use the categories
355 requested per parameter.
356 Returns None if no category search is requested.
358 if assignment.near_item:
359 tokens: Dict[Tuple[str, str], float] = {}
360 for t in self.query.get_tokens(assignment.near_item, TokenType.NEAR_ITEM):
361 cat = t.get_category()
362 # The category of a near search will be that of near_item.
363 # Thus, if search is restricted to a category parameter,
364 # the two sets must intersect.
365 if (not self.details.categories or cat in self.details.categories)\
366 and t.penalty < tokens.get(cat, 1000.0):
367 tokens[cat] = t.penalty
368 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
373 PENALTY_WORDCHANGE = {
374 BreakType.START: 0.0,
376 BreakType.PHRASE: 0.0,