1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Convertion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18 from nominatim.api.logging import log
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
56 self.details = details
60 def configured_for_country(self) -> bool:
61 """ Return true if the search details are configured to
62 allow countries in the result.
64 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
65 and self.details.layer_enabled(DataLayer.ADDRESS)
69 def configured_for_postcode(self) -> bool:
70 """ Return true if the search details are configured to
71 allow postcodes in the result.
73 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
74 and self.details.layer_enabled(DataLayer.ADDRESS)
78 def configured_for_housenumbers(self) -> bool:
79 """ Return true if the search details are configured to
80 allow addresses in the result.
82 return self.details.max_rank >= 30 \
83 and self.details.layer_enabled(DataLayer.ADDRESS)
86 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
87 """ Yield all possible abstract searches for the given token assignment.
89 sdata = self.get_search_data(assignment)
93 categories = self.get_search_categories(assignment)
95 if assignment.name is None:
96 if categories and not sdata.postcodes:
97 sdata.qualifiers = categories
99 builder = self.build_poi_search(sdata)
100 elif assignment.housenumber:
101 hnr_tokens = self.query.get_tokens(assignment.housenumber,
102 TokenType.HOUSENUMBER)
103 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
105 builder = self.build_special_search(sdata, assignment.address,
108 builder = self.build_name_search(sdata, assignment.name, assignment.address,
112 penalty = min(categories.penalties)
113 categories.penalties = [p - penalty for p in categories.penalties]
114 for search in builder:
115 yield dbs.NearSearch(penalty, categories, search)
120 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
121 """ Build abstract search query for a simple category search.
122 This kind of search requires an additional geographic constraint.
124 if not sdata.housenumbers \
125 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
126 yield dbs.PoiSearch(sdata)
129 def build_special_search(self, sdata: dbf.SearchData,
130 address: List[TokenRange],
131 is_category: bool) -> Iterator[dbs.AbstractSearch]:
132 """ Build abstract search queries for searches that do not involve
136 # No special searches over qualifiers supported.
139 if sdata.countries and not address and not sdata.postcodes \
140 and self.configured_for_country:
141 yield dbs.CountrySearch(sdata)
143 if sdata.postcodes and (is_category or self.configured_for_postcode):
144 penalty = 0.0 if sdata.countries else 0.1
146 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
147 [t.token for r in address
148 for t in self.query.get_partials_list(r)],
151 yield dbs.PostcodeSearch(penalty, sdata)
154 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
155 address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
156 """ Build a simple address search for special entries where the
157 housenumber is the main name token.
159 partial_tokens: List[int] = []
160 for trange in address:
161 partial_tokens.extend(t.token for t in self.query.get_partials_list(trange))
163 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any'),
164 dbf.FieldLookup('nameaddress_vector', partial_tokens, 'lookup_all')
166 yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
169 def build_name_search(self, sdata: dbf.SearchData,
170 name: TokenRange, address: List[TokenRange],
171 is_category: bool) -> Iterator[dbs.AbstractSearch]:
172 """ Build abstract search queries for simple name or address searches.
174 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
175 ranking = self.get_name_ranking(name)
176 name_penalty = ranking.normalize_penalty()
178 sdata.rankings.append(ranking)
179 for penalty, count, lookup in self.yield_lookups(name, address):
180 sdata.lookups = lookup
181 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
184 def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
185 -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
186 """ Yield all variants how the given name and address should best
187 be searched for. This takes into account how frequent the terms
188 are and tries to find a lookup that optimizes index use.
190 penalty = 0.0 # extra penalty currently unused
192 name_partials = self.query.get_partials_list(name)
193 exp_name_count = min(t.count for t in name_partials)
195 for trange in address:
196 addr_partials.extend(self.query.get_partials_list(trange))
197 addr_tokens = [t.token for t in addr_partials]
198 partials_indexed = all(t.is_indexed for t in name_partials) \
199 and all(t.is_indexed for t in addr_partials)
201 if (len(name_partials) > 3 or exp_name_count < 1000) and partials_indexed:
202 # Lookup by name partials, use address partials to restrict results.
203 lookup = [dbf.FieldLookup('name_vector',
204 [t.token for t in name_partials], 'lookup_all')]
206 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
207 yield penalty, exp_name_count, lookup
210 exp_addr_count = min(t.count for t in addr_partials) if addr_partials else exp_name_count
211 if exp_addr_count < 1000 and partials_indexed:
212 # Lookup by address partials and restrict results through name terms.
213 # Give this a small penalty because lookups in the address index are
215 yield penalty + exp_addr_count/5000, exp_addr_count,\
216 [dbf.FieldLookup('name_vector', [t.token for t in name_partials], 'restrict'),
217 dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all')]
220 # Partial term to frequent. Try looking up by rare full names first.
221 name_fulls = self.query.get_tokens(name, TokenType.WORD)
222 rare_names = list(filter(lambda t: t.count < 1000, name_fulls))
223 # At this point drop unindexed partials from the address.
224 # This might yield wrong results, nothing we can do about that.
225 if not partials_indexed:
226 addr_tokens = [t.token for t in addr_partials if t.is_indexed]
227 log().var_dump('before', penalty)
228 penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
229 log().var_dump('after', penalty)
231 # Any of the full names applies with all of the partials from the address
232 lookup = [dbf.FieldLookup('name_vector', [t.token for t in rare_names], 'lookup_any')]
234 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'restrict'))
235 yield penalty, sum(t.count for t in rare_names), lookup
237 # To catch remaining results, lookup by name and address
238 # We only do this if there is a reasonable number of results expected.
239 if min(exp_name_count, exp_addr_count) < 10000:
240 if all(t.is_indexed for t in name_partials):
241 lookup = [dbf.FieldLookup('name_vector',
242 [t.token for t in name_partials], 'lookup_all')]
244 # we don't have the partials, try with the non-rare names
245 non_rare_names = [t.token for t in name_fulls if t.count >= 1000]
246 if not non_rare_names:
248 lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
250 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
251 yield penalty + 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens)),\
252 min(exp_name_count, exp_addr_count), lookup
255 def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
256 """ Create a ranking expression for a name term in the given range.
258 name_fulls = self.query.get_tokens(trange, TokenType.WORD)
259 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
260 ranks.sort(key=lambda r: r.penalty)
261 # Fallback, sum of penalty for partials
262 name_partials = self.query.get_partials_list(trange)
263 default = sum(t.penalty for t in name_partials) + 0.2
264 return dbf.FieldRanking('name_vector', default, ranks)
267 def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
268 """ Create a list of ranking expressions for an address term
269 for the given ranges.
271 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
272 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
273 ranks: List[dbf.RankedTokens] = []
275 while todo: # pylint: disable=too-many-nested-blocks
276 neglen, pos, rank = heapq.heappop(todo)
277 for tlist in self.query.nodes[pos].starting:
278 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
279 if tlist.end < trange.end:
280 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
281 if tlist.ttype == TokenType.PARTIAL:
282 penalty = rank.penalty + chgpenalty \
283 + max(t.penalty for t in tlist.tokens)
284 heapq.heappush(todo, (neglen - 1, tlist.end,
285 dbf.RankedTokens(penalty, rank.tokens)))
287 for t in tlist.tokens:
288 heapq.heappush(todo, (neglen - 1, tlist.end,
289 rank.with_token(t, chgpenalty)))
290 elif tlist.end == trange.end:
291 if tlist.ttype == TokenType.PARTIAL:
292 ranks.append(dbf.RankedTokens(rank.penalty
293 + max(t.penalty for t in tlist.tokens),
296 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
298 # Too many variants, bail out and only add
299 # Worst-case Fallback: sum of penalty of partials
300 name_partials = self.query.get_partials_list(trange)
301 default = sum(t.penalty for t in name_partials) + 0.2
302 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
303 # Bail out of outer loop
307 ranks.sort(key=lambda r: len(r.tokens))
308 default = ranks[0].penalty + 0.3
310 ranks.sort(key=lambda r: r.penalty)
312 return dbf.FieldRanking('nameaddress_vector', default, ranks)
315 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
316 """ Collect the tokens for the non-name search fields in the
319 sdata = dbf.SearchData()
320 sdata.penalty = assignment.penalty
321 if assignment.country:
322 tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
323 if self.details.countries:
324 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
327 sdata.set_strings('countries', tokens)
328 elif self.details.countries:
329 sdata.countries = dbf.WeightedStrings(self.details.countries,
330 [0.0] * len(self.details.countries))
331 if assignment.housenumber:
332 sdata.set_strings('housenumbers',
333 self.query.get_tokens(assignment.housenumber,
334 TokenType.HOUSENUMBER))
335 if assignment.postcode:
336 sdata.set_strings('postcodes',
337 self.query.get_tokens(assignment.postcode,
339 if assignment.qualifier:
340 sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
341 TokenType.QUALIFIER))
343 if assignment.address:
344 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
351 def get_search_categories(self,
352 assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
353 """ Collect tokens for category search or use the categories
354 requested per parameter.
355 Returns None if no category search is requested.
357 if assignment.category:
358 tokens = [t for t in self.query.get_tokens(assignment.category,
360 if not self.details.categories
361 or t.get_category() in self.details.categories]
362 return dbf.WeightedCategories([t.get_category() for t in tokens],
363 [t.penalty for t in tokens])
365 if self.details.categories:
366 return dbf.WeightedCategories(self.details.categories,
367 [0.0] * len(self.details.categories))
372 PENALTY_WORDCHANGE = {
373 BreakType.START: 0.0,
375 BreakType.PHRASE: 0.0,