]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/tokenizer/icu_name_processor.py
adapt special terms lookup to new word table
[nominatim.git] / nominatim / tokenizer / icu_name_processor.py
1 """
2 Processor for names that are imported into the database based on the
3 ICU library.
4 """
5 from collections import defaultdict
6 import itertools
7
8 from icu import Transliterator
9 import datrie
10
11 from nominatim.db.properties import set_property, get_property
12 from nominatim.tokenizer import icu_variants as variants
13
14 DBCFG_IMPORT_NORM_RULES = "tokenizer_import_normalisation"
15 DBCFG_IMPORT_TRANS_RULES = "tokenizer_import_transliteration"
16 DBCFG_IMPORT_REPLACEMENTS = "tokenizer_import_replacements"
17 DBCFG_SEARCH_STD_RULES = "tokenizer_search_standardization"
18
19
20 class ICUNameProcessorRules:
21     """ Data object that saves the rules needed for the name processor.
22
23         The rules can either be initialised through an ICURuleLoader or
24         be loaded from a database when a connection is given.
25     """
26     def __init__(self, loader=None, conn=None):
27         if loader is not None:
28             self.norm_rules = loader.get_normalization_rules()
29             self.trans_rules = loader.get_transliteration_rules()
30             self.replacements = loader.get_replacement_pairs()
31             self.search_rules = loader.get_search_rules()
32         elif conn is not None:
33             self.norm_rules = get_property(conn, DBCFG_IMPORT_NORM_RULES)
34             self.trans_rules = get_property(conn, DBCFG_IMPORT_TRANS_RULES)
35             self.replacements = \
36                 variants.unpickle_variant_set(get_property(conn, DBCFG_IMPORT_REPLACEMENTS))
37             self.search_rules = get_property(conn, DBCFG_SEARCH_STD_RULES)
38         else:
39             assert False, "Parameter loader or conn required."
40
41
42     def save_rules(self, conn):
43         """ Save the rules in the property table of the given database.
44             the rules can be loaded again by handing in a connection into
45             the constructor of the class.
46         """
47         set_property(conn, DBCFG_IMPORT_NORM_RULES, self.norm_rules)
48         set_property(conn, DBCFG_IMPORT_TRANS_RULES, self.trans_rules)
49         set_property(conn, DBCFG_IMPORT_REPLACEMENTS,
50                      variants.pickle_variant_set(self.replacements))
51         set_property(conn, DBCFG_SEARCH_STD_RULES, self.search_rules)
52
53
54 class ICUNameProcessor:
55     """ Collects the different transformation rules for normalisation of names
56         and provides the functions to aply the transformations.
57     """
58
59     def __init__(self, rules):
60         self.normalizer = Transliterator.createFromRules("icu_normalization",
61                                                          rules.norm_rules)
62         self.to_ascii = Transliterator.createFromRules("icu_to_ascii",
63                                                        rules.trans_rules +
64                                                        ";[:Space:]+ > ' '")
65         self.search = Transliterator.createFromRules("icu_search",
66                                                      rules.search_rules)
67
68         # Intermediate reorder by source. Also compute required character set.
69         immediate = defaultdict(list)
70         chars = set()
71         for variant in rules.replacements:
72             if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
73                 replstr = variant.replacement[:-1]
74             else:
75                 replstr = variant.replacement
76             immediate[variant.source].append(replstr)
77             chars.update(variant.source)
78         # Then copy to datrie
79         self.replacements = datrie.Trie(''.join(chars))
80         for src, repllist in immediate.items():
81             self.replacements[src] = repllist
82
83
84     def get_normalized(self, name):
85         """ Normalize the given name, i.e. remove all elements not relevant
86             for search.
87         """
88         return self.normalizer.transliterate(name).strip()
89
90     def get_variants_ascii(self, norm_name):
91         """ Compute the spelling variants for the given normalized name
92             and transliterate the result.
93         """
94         baseform = '^ ' + norm_name + ' ^'
95         partials = ['']
96
97         startpos = 0
98         pos = 0
99         force_space = False
100         while pos < len(baseform):
101             full, repl = self.replacements.longest_prefix_item(baseform[pos:],
102                                                                (None, None))
103             if full is not None:
104                 done = baseform[startpos:pos]
105                 partials = [v + done + r
106                             for v, r in itertools.product(partials, repl)
107                             if not force_space or r.startswith(' ')]
108                 if len(partials) > 128:
109                     # If too many variants are produced, they are unlikely
110                     # to be helpful. Only use the original term.
111                     startpos = 0
112                     break
113                 startpos = pos + len(full)
114                 if full[-1] == ' ':
115                     startpos -= 1
116                     force_space = True
117                 pos = startpos
118             else:
119                 pos += 1
120                 force_space = False
121
122         # No variants detected? Fast return.
123         if startpos == 0:
124             trans_name = self.to_ascii.transliterate(norm_name).strip()
125             return [trans_name] if trans_name else []
126
127         return self._compute_result_set(partials, baseform[startpos:])
128
129
130     def _compute_result_set(self, partials, prefix):
131         results = set()
132
133         for variant in partials:
134             vname = variant + prefix
135             trans_name = self.to_ascii.transliterate(vname[1:-1]).strip()
136             if trans_name:
137                 results.add(trans_name)
138
139         return list(results)
140
141
142     def get_search_normalized(self, name):
143         """ Return the normalized version of the name (including transliteration)
144             to be applied at search time.
145         """
146         return self.search.transliterate(' ' + name + ' ').strip()