]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/api/search/db_search_builder.py
Merge remote-tracking branch 'upstream/master'
[nominatim.git] / nominatim / api / search / db_search_builder.py
1 # SPDX-License-Identifier: GPL-3.0-or-later
2 #
3 # This file is part of Nominatim. (https://nominatim.org)
4 #
5 # Copyright (C) 2023 by the Nominatim developer community.
6 # For a full list of authors see the git log.
7 """
8 Convertion from token assignment to an abstract DB search.
9 """
10 from typing import Optional, List, Tuple, Iterator
11 import heapq
12
13 from nominatim.api.types import SearchDetails, DataLayer
14 from nominatim.api.search.query import QueryStruct, Token, TokenType, TokenRange, BreakType
15 from nominatim.api.search.token_assignment import TokenAssignment
16 import nominatim.api.search.db_search_fields as dbf
17 import nominatim.api.search.db_searches as dbs
18
19
20 def wrap_near_search(categories: List[Tuple[str, str]],
21                      search: dbs.AbstractSearch) -> dbs.NearSearch:
22     """ Create a new search that wraps the given search in a search
23         for near places of the given category.
24     """
25     return dbs.NearSearch(penalty=search.penalty,
26                           categories=dbf.WeightedCategories(categories,
27                                                             [0.0] * len(categories)),
28                           search=search)
29
30
31 def build_poi_search(category: List[Tuple[str, str]],
32                      countries: Optional[List[str]]) -> dbs.PoiSearch:
33     """ Create a new search for places by the given category, possibly
34         constraint to the given countries.
35     """
36     if countries:
37         ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
38     else:
39         ccs = dbf.WeightedStrings([], [])
40
41     class _PoiData(dbf.SearchData):
42         penalty = 0.0
43         qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
44         countries=ccs
45
46     return dbs.PoiSearch(_PoiData())
47
48
49 class SearchBuilder:
50     """ Build the abstract search queries from token assignments.
51     """
52
53     def __init__(self, query: QueryStruct, details: SearchDetails) -> None:
54         self.query = query
55         self.details = details
56
57
58     @property
59     def configured_for_country(self) -> bool:
60         """ Return true if the search details are configured to
61             allow countries in the result.
62         """
63         return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
64                and self.details.layer_enabled(DataLayer.ADDRESS)
65
66
67     @property
68     def configured_for_postcode(self) -> bool:
69         """ Return true if the search details are configured to
70             allow postcodes in the result.
71         """
72         return self.details.min_rank <= 5 and self.details.max_rank >= 11\
73                and self.details.layer_enabled(DataLayer.ADDRESS)
74
75
76     @property
77     def configured_for_housenumbers(self) -> bool:
78         """ Return true if the search details are configured to
79             allow addresses in the result.
80         """
81         return self.details.max_rank >= 30 \
82                and self.details.layer_enabled(DataLayer.ADDRESS)
83
84
85     def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
86         """ Yield all possible abstract searches for the given token assignment.
87         """
88         sdata = self.get_search_data(assignment)
89         if sdata is None:
90             return
91
92         categories = self.get_search_categories(assignment)
93
94         if assignment.name is None:
95             if categories and not sdata.postcodes:
96                 sdata.qualifiers = categories
97                 categories = None
98                 builder = self.build_poi_search(sdata)
99             elif assignment.housenumber:
100                 hnr_tokens = self.query.get_tokens(assignment.housenumber,
101                                                    TokenType.HOUSENUMBER)
102                 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
103             else:
104                 builder = self.build_special_search(sdata, assignment.address,
105                                                     bool(categories))
106         else:
107             builder = self.build_name_search(sdata, assignment.name, assignment.address,
108                                              bool(categories))
109
110         if categories:
111             penalty = min(categories.penalties)
112             categories.penalties = [p - penalty for p in categories.penalties]
113             for search in builder:
114                 yield dbs.NearSearch(penalty, categories, search)
115         else:
116             yield from builder
117
118
119     def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
120         """ Build abstract search query for a simple category search.
121             This kind of search requires an additional geographic constraint.
122         """
123         if not sdata.housenumbers \
124            and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
125             yield dbs.PoiSearch(sdata)
126
127
128     def build_special_search(self, sdata: dbf.SearchData,
129                              address: List[TokenRange],
130                              is_category: bool) -> Iterator[dbs.AbstractSearch]:
131         """ Build abstract search queries for searches that do not involve
132             a named place.
133         """
134         if sdata.qualifiers:
135             # No special searches over qualifiers supported.
136             return
137
138         if sdata.countries and not address and not sdata.postcodes \
139            and self.configured_for_country:
140             yield dbs.CountrySearch(sdata)
141
142         if sdata.postcodes and (is_category or self.configured_for_postcode):
143             penalty = 0.0 if sdata.countries else 0.1
144             if address:
145                 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
146                                                  [t.token for r in address
147                                                   for t in self.query.get_partials_list(r)],
148                                                  'restrict')]
149                 penalty += 0.2
150             yield dbs.PostcodeSearch(penalty, sdata)
151
152
153     def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
154                                  address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
155         """ Build a simple address search for special entries where the
156             housenumber is the main name token.
157         """
158         sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], 'lookup_any')]
159
160         partials = [t for trange in address
161                        for t in self.query.get_partials_list(trange)]
162
163         if len(partials) != 1 or partials[0].count < 10000:
164             sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
165                                                  [t.token for t in partials], 'lookup_all'))
166         else:
167             sdata.lookups.append(
168                 dbf.FieldLookup('nameaddress_vector',
169                                 [t.token for t
170                                  in self.query.get_tokens(address[0], TokenType.WORD)],
171                                 'lookup_any'))
172
173         sdata.housenumbers = dbf.WeightedStrings([], [])
174         yield dbs.PlaceSearch(0.05, sdata, sum(t.count for t in hnrs))
175
176
177     def build_name_search(self, sdata: dbf.SearchData,
178                           name: TokenRange, address: List[TokenRange],
179                           is_category: bool) -> Iterator[dbs.AbstractSearch]:
180         """ Build abstract search queries for simple name or address searches.
181         """
182         if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
183             ranking = self.get_name_ranking(name)
184             name_penalty = ranking.normalize_penalty()
185             if ranking.rankings:
186                 sdata.rankings.append(ranking)
187             for penalty, count, lookup in self.yield_lookups(name, address):
188                 sdata.lookups = lookup
189                 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
190
191
192     def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
193                           -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
194         """ Yield all variants how the given name and address should best
195             be searched for. This takes into account how frequent the terms
196             are and tries to find a lookup that optimizes index use.
197         """
198         penalty = 0.0 # extra penalty
199         name_partials = self.query.get_partials_list(name)
200         name_tokens = [t.token for t in name_partials]
201
202         addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
203         addr_tokens = [t.token for t in addr_partials]
204
205         partials_indexed = all(t.is_indexed for t in name_partials) \
206                            and all(t.is_indexed for t in addr_partials)
207         exp_count = min(t.count for t in name_partials)
208
209         if (len(name_partials) > 3 or exp_count < 1000) and partials_indexed:
210             yield penalty, exp_count, dbf.lookup_by_names(name_tokens, addr_tokens)
211             return
212
213         exp_count = min(exp_count, min(t.count for t in addr_partials)) \
214                     if addr_partials else exp_count
215
216         # Partial term to frequent. Try looking up by rare full names first.
217         name_fulls = self.query.get_tokens(name, TokenType.WORD)
218         rare_names = list(filter(lambda t: t.count < 10000, name_fulls))
219         # At this point drop unindexed partials from the address.
220         # This might yield wrong results, nothing we can do about that.
221         if not partials_indexed:
222             addr_tokens = [t.token for t in addr_partials if t.is_indexed]
223             penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
224         if rare_names:
225             # Any of the full names applies with all of the partials from the address
226             yield penalty, sum(t.count for t in rare_names),\
227                   dbf.lookup_by_any_name([t.token for t in rare_names], addr_tokens)
228
229         # To catch remaining results, lookup by name and address
230         # We only do this if there is a reasonable number of results expected.
231         if exp_count < 10000:
232             if all(t.is_indexed for t in name_partials):
233                 lookup = [dbf.FieldLookup('name_vector', name_tokens, 'lookup_all')]
234             else:
235                 # we don't have the partials, try with the non-rare names
236                 non_rare_names = [t.token for t in name_fulls if t.count >= 10000]
237                 if not non_rare_names:
238                     return
239                 lookup = [dbf.FieldLookup('name_vector', non_rare_names, 'lookup_any')]
240             if addr_tokens:
241                 lookup.append(dbf.FieldLookup('nameaddress_vector', addr_tokens, 'lookup_all'))
242             penalty += 0.1 * max(0, 5 - len(name_partials) - len(addr_tokens))
243             if len(rare_names) == len(name_fulls):
244                 # if there already was a search for all full tokens,
245                 # avoid this if anything has been found
246                 penalty += 0.25
247             yield penalty, exp_count, lookup
248
249
250     def get_name_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
251         """ Create a ranking expression for a name term in the given range.
252         """
253         name_fulls = self.query.get_tokens(trange, TokenType.WORD)
254         ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
255         ranks.sort(key=lambda r: r.penalty)
256         # Fallback, sum of penalty for partials
257         name_partials = self.query.get_partials_list(trange)
258         default = sum(t.penalty for t in name_partials) + 0.2
259         return dbf.FieldRanking('name_vector', default, ranks)
260
261
262     def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
263         """ Create a list of ranking expressions for an address term
264             for the given ranges.
265         """
266         todo: List[Tuple[int, int, dbf.RankedTokens]] = []
267         heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
268         ranks: List[dbf.RankedTokens] = []
269
270         while todo: # pylint: disable=too-many-nested-blocks
271             neglen, pos, rank = heapq.heappop(todo)
272             for tlist in self.query.nodes[pos].starting:
273                 if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
274                     if tlist.end < trange.end:
275                         chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
276                         if tlist.ttype == TokenType.PARTIAL:
277                             penalty = rank.penalty + chgpenalty \
278                                       + max(t.penalty for t in tlist.tokens)
279                             heapq.heappush(todo, (neglen - 1, tlist.end,
280                                                   dbf.RankedTokens(penalty, rank.tokens)))
281                         else:
282                             for t in tlist.tokens:
283                                 heapq.heappush(todo, (neglen - 1, tlist.end,
284                                                       rank.with_token(t, chgpenalty)))
285                     elif tlist.end == trange.end:
286                         if tlist.ttype == TokenType.PARTIAL:
287                             ranks.append(dbf.RankedTokens(rank.penalty
288                                                           + max(t.penalty for t in tlist.tokens),
289                                                           rank.tokens))
290                         else:
291                             ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
292                         if len(ranks) >= 10:
293                             # Too many variants, bail out and only add
294                             # Worst-case Fallback: sum of penalty of partials
295                             name_partials = self.query.get_partials_list(trange)
296                             default = sum(t.penalty for t in name_partials) + 0.2
297                             ranks.append(dbf.RankedTokens(rank.penalty + default, []))
298                             # Bail out of outer loop
299                             todo.clear()
300                             break
301
302         ranks.sort(key=lambda r: len(r.tokens))
303         default = ranks[0].penalty + 0.3
304         del ranks[0]
305         ranks.sort(key=lambda r: r.penalty)
306
307         return dbf.FieldRanking('nameaddress_vector', default, ranks)
308
309
310     def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
311         """ Collect the tokens for the non-name search fields in the
312             assignment.
313         """
314         sdata = dbf.SearchData()
315         sdata.penalty = assignment.penalty
316         if assignment.country:
317             tokens = self.query.get_tokens(assignment.country, TokenType.COUNTRY)
318             if self.details.countries:
319                 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
320                 if not tokens:
321                     return None
322             sdata.set_strings('countries', tokens)
323         elif self.details.countries:
324             sdata.countries = dbf.WeightedStrings(self.details.countries,
325                                                   [0.0] * len(self.details.countries))
326         if assignment.housenumber:
327             sdata.set_strings('housenumbers',
328                               self.query.get_tokens(assignment.housenumber,
329                                                     TokenType.HOUSENUMBER))
330         if assignment.postcode:
331             sdata.set_strings('postcodes',
332                               self.query.get_tokens(assignment.postcode,
333                                                     TokenType.POSTCODE))
334         if assignment.qualifier:
335             sdata.set_qualifiers(self.query.get_tokens(assignment.qualifier,
336                                                        TokenType.QUALIFIER))
337
338         if assignment.address:
339             sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
340         else:
341             sdata.rankings = []
342
343         return sdata
344
345
346     def get_search_categories(self,
347                               assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
348         """ Collect tokens for category search or use the categories
349             requested per parameter.
350             Returns None if no category search is requested.
351         """
352         if assignment.category:
353             tokens = [t for t in self.query.get_tokens(assignment.category,
354                                                        TokenType.CATEGORY)
355                       if not self.details.categories
356                          or t.get_category() in self.details.categories]
357             return dbf.WeightedCategories([t.get_category() for t in tokens],
358                                           [t.penalty for t in tokens])
359
360         if self.details.categories:
361             return dbf.WeightedCategories(self.details.categories,
362                                           [0.0] * len(self.details.categories))
363
364         return None
365
366
367 PENALTY_WORDCHANGE = {
368     BreakType.START: 0.0,
369     BreakType.END: 0.0,
370     BreakType.PHRASE: 0.0,
371     BreakType.WORD: 0.1,
372     BreakType.PART: 0.2,
373     BreakType.TOKEN: 0.4
374 }