]> git.openstreetmap.org Git - nominatim.git/blob - nominatim/tokenizer/icu_name_processor.py
introduce sanitizer step before token analysis
[nominatim.git] / nominatim / tokenizer / icu_name_processor.py
1 """
2 Processor for names that are imported into the database based on the
3 ICU library.
4 """
5 from collections import defaultdict
6 import itertools
7
8 from icu import Transliterator
9 import datrie
10
11
12 class ICUNameProcessor:
13     """ Collects the different transformation rules for normalisation of names
14         and provides the functions to apply the transformations.
15     """
16
17     def __init__(self, norm_rules, trans_rules, replacements):
18         self.normalizer = Transliterator.createFromRules("icu_normalization",
19                                                          norm_rules)
20         self.to_ascii = Transliterator.createFromRules("icu_to_ascii",
21                                                        trans_rules +
22                                                        ";[:Space:]+ > ' '")
23         self.search = Transliterator.createFromRules("icu_search",
24                                                      norm_rules + trans_rules)
25
26         # Intermediate reorder by source. Also compute required character set.
27         immediate = defaultdict(list)
28         chars = set()
29         for variant in replacements:
30             if variant.source[-1] == ' ' and variant.replacement[-1] == ' ':
31                 replstr = variant.replacement[:-1]
32             else:
33                 replstr = variant.replacement
34             immediate[variant.source].append(replstr)
35             chars.update(variant.source)
36         # Then copy to datrie
37         self.replacements = datrie.Trie(''.join(chars))
38         for src, repllist in immediate.items():
39             self.replacements[src] = repllist
40
41
42     def get_normalized(self, name):
43         """ Normalize the given name, i.e. remove all elements not relevant
44             for search.
45         """
46         return self.normalizer.transliterate(name).strip()
47
48     def get_variants_ascii(self, norm_name):
49         """ Compute the spelling variants for the given normalized name
50             and transliterate the result.
51         """
52         baseform = '^ ' + norm_name + ' ^'
53         partials = ['']
54
55         startpos = 0
56         pos = 0
57         force_space = False
58         while pos < len(baseform):
59             full, repl = self.replacements.longest_prefix_item(baseform[pos:],
60                                                                (None, None))
61             if full is not None:
62                 done = baseform[startpos:pos]
63                 partials = [v + done + r
64                             for v, r in itertools.product(partials, repl)
65                             if not force_space or r.startswith(' ')]
66                 if len(partials) > 128:
67                     # If too many variants are produced, they are unlikely
68                     # to be helpful. Only use the original term.
69                     startpos = 0
70                     break
71                 startpos = pos + len(full)
72                 if full[-1] == ' ':
73                     startpos -= 1
74                     force_space = True
75                 pos = startpos
76             else:
77                 pos += 1
78                 force_space = False
79
80         # No variants detected? Fast return.
81         if startpos == 0:
82             trans_name = self.to_ascii.transliterate(norm_name).strip()
83             return [trans_name] if trans_name else []
84
85         return self._compute_result_set(partials, baseform[startpos:])
86
87
88     def _compute_result_set(self, partials, prefix):
89         results = set()
90
91         for variant in partials:
92             vname = variant + prefix
93             trans_name = self.to_ascii.transliterate(vname[1:-1]).strip()
94             if trans_name:
95                 results.add(trans_name)
96
97         return list(results)
98
99
100     def get_search_normalized(self, name):
101         """ Return the normalized version of the name (including transliteration)
102             to be applied at search time.
103         """
104         return self.search.transliterate(' ' + name + ' ').strip()