1 # SPDX-License-Identifier: GPL-3.0-or-later
3 # This file is part of Nominatim. (https://nominatim.org)
5 # Copyright (C) 2024 by the Nominatim developer community.
6 # For a full list of authors see the git log.
8 Conversion from token assignment to an abstract DB search.
10 from typing import Optional, List, Tuple, Iterator, Dict
13 from ..types import SearchDetails, DataLayer
14 from . import query as qmod
15 from .token_assignment import TokenAssignment
16 from . import db_search_fields as dbf
17 from . import db_searches as dbs
18 from . import db_search_lookups as lookups
21 def wrap_near_search(categories: List[Tuple[str, str]],
22 search: dbs.AbstractSearch) -> dbs.NearSearch:
23 """ Create a new search that wraps the given search in a search
24 for near places of the given category.
26 return dbs.NearSearch(penalty=search.penalty,
27 categories=dbf.WeightedCategories(categories,
28 [0.0] * len(categories)),
32 def build_poi_search(category: List[Tuple[str, str]],
33 countries: Optional[List[str]]) -> dbs.PoiSearch:
34 """ Create a new search for places by the given category, possibly
35 constraint to the given countries.
38 ccs = dbf.WeightedStrings(countries, [0.0] * len(countries))
40 ccs = dbf.WeightedStrings([], [])
42 class _PoiData(dbf.SearchData):
44 qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
47 return dbs.PoiSearch(_PoiData())
51 """ Build the abstract search queries from token assignments.
54 def __init__(self, query: qmod.QueryStruct, details: SearchDetails) -> None:
56 self.details = details
59 def configured_for_country(self) -> bool:
60 """ Return true if the search details are configured to
61 allow countries in the result.
63 return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
64 and self.details.layer_enabled(DataLayer.ADDRESS)
67 def configured_for_postcode(self) -> bool:
68 """ Return true if the search details are configured to
69 allow postcodes in the result.
71 return self.details.min_rank <= 5 and self.details.max_rank >= 11\
72 and self.details.layer_enabled(DataLayer.ADDRESS)
75 def configured_for_housenumbers(self) -> bool:
76 """ Return true if the search details are configured to
77 allow addresses in the result.
79 return self.details.max_rank >= 30 \
80 and self.details.layer_enabled(DataLayer.ADDRESS)
82 def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
83 """ Yield all possible abstract searches for the given token assignment.
85 sdata = self.get_search_data(assignment)
89 near_items = self.get_near_items(assignment)
90 if near_items is not None and not near_items:
91 return # impossible combination of near items and category parameter
93 if assignment.name is None:
94 if near_items and not sdata.postcodes:
95 sdata.qualifiers = near_items
97 builder = self.build_poi_search(sdata)
98 elif assignment.housenumber:
99 hnr_tokens = self.query.get_tokens(assignment.housenumber,
100 qmod.TOKEN_HOUSENUMBER)
101 builder = self.build_housenumber_search(sdata, hnr_tokens, assignment.address)
103 builder = self.build_special_search(sdata, assignment.address,
106 builder = self.build_name_search(sdata, assignment.name, assignment.address,
110 penalty = min(near_items.penalties)
111 near_items.penalties = [p - penalty for p in near_items.penalties]
112 for search in builder:
113 search_penalty = search.penalty
115 yield dbs.NearSearch(penalty + assignment.penalty + search_penalty,
118 for search in builder:
119 search.penalty += assignment.penalty
122 def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
123 """ Build abstract search query for a simple category search.
124 This kind of search requires an additional geographic constraint.
126 if not sdata.housenumbers \
127 and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
128 yield dbs.PoiSearch(sdata)
130 def build_special_search(self, sdata: dbf.SearchData,
131 address: List[qmod.TokenRange],
132 is_category: bool) -> Iterator[dbs.AbstractSearch]:
133 """ Build abstract search queries for searches that do not involve
137 # No special searches over qualifiers supported.
140 if sdata.countries and not address and not sdata.postcodes \
141 and self.configured_for_country:
142 yield dbs.CountrySearch(sdata)
144 if sdata.postcodes and (is_category or self.configured_for_postcode):
145 penalty = 0.0 if sdata.countries else 0.1
147 sdata.lookups = [dbf.FieldLookup('nameaddress_vector',
148 [t.token for r in address
149 for t in self.query.get_partials_list(r)],
151 yield dbs.PostcodeSearch(penalty, sdata)
153 def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[qmod.Token],
154 address: List[qmod.TokenRange]) -> Iterator[dbs.AbstractSearch]:
155 """ Build a simple address search for special entries where the
156 housenumber is the main name token.
158 sdata.lookups = [dbf.FieldLookup('name_vector', [t.token for t in hnrs], lookups.LookupAny)]
159 expected_count = sum(t.count for t in hnrs)
161 partials = {t.token: t.addr_count for trange in address
162 for t in self.query.get_partials_list(trange)}
165 # can happen when none of the partials is indexed
168 if expected_count < 8000:
169 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
170 list(partials), lookups.Restrict))
171 elif len(partials) != 1 or list(partials.values())[0] < 10000:
172 sdata.lookups.append(dbf.FieldLookup('nameaddress_vector',
173 list(partials), lookups.LookupAll))
175 addr_fulls = [t.token for t
176 in self.query.get_tokens(address[0], qmod.TOKEN_WORD)]
177 if len(addr_fulls) > 5:
179 sdata.lookups.append(
180 dbf.FieldLookup('nameaddress_vector', addr_fulls, lookups.LookupAny))
182 sdata.housenumbers = dbf.WeightedStrings([], [])
183 yield dbs.PlaceSearch(0.05, sdata, expected_count)
185 def build_name_search(self, sdata: dbf.SearchData,
186 name: qmod.TokenRange, address: List[qmod.TokenRange],
187 is_category: bool) -> Iterator[dbs.AbstractSearch]:
188 """ Build abstract search queries for simple name or address searches.
190 if is_category or not sdata.housenumbers or self.configured_for_housenumbers:
191 ranking = self.get_name_ranking(name)
192 name_penalty = ranking.normalize_penalty()
194 sdata.rankings.append(ranking)
195 for penalty, count, lookup in self.yield_lookups(name, address):
196 sdata.lookups = lookup
197 yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
199 def yield_lookups(self, name: qmod.TokenRange, address: List[qmod.TokenRange]
200 ) -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
201 """ Yield all variants how the given name and address should best
202 be searched for. This takes into account how frequent the terms
203 are and tries to find a lookup that optimizes index use.
205 penalty = 0.0 # extra penalty
206 name_partials = {t.token: t for t in self.query.get_partials_list(name)}
208 addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
209 addr_tokens = list({t.token for t in addr_partials})
211 exp_count = min(t.count for t in name_partials.values()) / (3**(len(name_partials) - 1))
213 if (len(name_partials) > 3 or exp_count < 8000):
214 yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
217 addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 50000
218 # Partial term to frequent. Try looking up by rare full names first.
219 name_fulls = self.query.get_tokens(name, qmod.TOKEN_WORD)
221 fulls_count = sum(t.count for t in name_fulls)
223 if fulls_count < 80000 or addr_count < 50000:
224 yield penalty, fulls_count / (2**len(addr_tokens)), \
225 self.get_full_name_ranking(name_fulls, addr_partials,
226 fulls_count > 30000 / max(1, len(addr_tokens)))
228 # To catch remaining results, lookup by name and address
229 # We only do this if there is a reasonable number of results expected.
230 exp_count /= 2**len(addr_tokens)
231 if exp_count < 10000 and addr_count < 20000:
232 penalty += 0.35 * max(1 if name_fulls else 0.1,
233 5 - len(name_partials) - len(addr_tokens))
234 yield penalty, exp_count, \
235 self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
237 def get_name_address_ranking(self, name_tokens: List[int],
238 addr_partials: List[qmod.Token]) -> List[dbf.FieldLookup]:
239 """ Create a ranking expression looking up by name and address.
241 lookup = [dbf.FieldLookup('name_vector', name_tokens, lookups.LookupAll)]
243 addr_restrict_tokens = []
244 addr_lookup_tokens = []
245 for t in addr_partials:
246 if t.addr_count > 20000:
247 addr_restrict_tokens.append(t.token)
249 addr_lookup_tokens.append(t.token)
251 if addr_restrict_tokens:
252 lookup.append(dbf.FieldLookup('nameaddress_vector',
253 addr_restrict_tokens, lookups.Restrict))
254 if addr_lookup_tokens:
255 lookup.append(dbf.FieldLookup('nameaddress_vector',
256 addr_lookup_tokens, lookups.LookupAll))
260 def get_full_name_ranking(self, name_fulls: List[qmod.Token], addr_partials: List[qmod.Token],
261 use_lookup: bool) -> List[dbf.FieldLookup]:
262 """ Create a ranking expression with full name terms and
263 additional address lookup. When 'use_lookup' is true, then
264 address lookups will use the index, when the occurrences are not
268 addr_restrict_tokens = []
269 addr_lookup_tokens = [t.token for t in addr_partials]
271 addr_restrict_tokens = [t.token for t in addr_partials]
272 addr_lookup_tokens = []
274 return dbf.lookup_by_any_name([t.token for t in name_fulls],
275 addr_restrict_tokens, addr_lookup_tokens)
277 def get_name_ranking(self, trange: qmod.TokenRange,
278 db_field: str = 'name_vector') -> dbf.FieldRanking:
279 """ Create a ranking expression for a name term in the given range.
281 name_fulls = self.query.get_tokens(trange, qmod.TOKEN_WORD)
282 ranks = [dbf.RankedTokens(t.penalty, [t.token]) for t in name_fulls]
283 ranks.sort(key=lambda r: r.penalty)
284 # Fallback, sum of penalty for partials
285 name_partials = self.query.get_partials_list(trange)
286 default = sum(t.penalty for t in name_partials) + 0.2
287 return dbf.FieldRanking(db_field, default, ranks)
289 def get_addr_ranking(self, trange: qmod.TokenRange) -> dbf.FieldRanking:
290 """ Create a list of ranking expressions for an address term
291 for the given ranges.
293 todo: List[Tuple[int, int, dbf.RankedTokens]] = []
294 heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
295 ranks: List[dbf.RankedTokens] = []
298 neglen, pos, rank = heapq.heappop(todo)
299 for tlist in self.query.nodes[pos].starting:
300 if tlist.ttype in (qmod.TOKEN_PARTIAL, qmod.TOKEN_WORD):
301 if tlist.end < trange.end:
302 chgpenalty = PENALTY_WORDCHANGE[self.query.nodes[tlist.end].btype]
303 if tlist.ttype == qmod.TOKEN_PARTIAL:
304 penalty = rank.penalty + chgpenalty \
305 + max(t.penalty for t in tlist.tokens)
306 heapq.heappush(todo, (neglen - 1, tlist.end,
307 dbf.RankedTokens(penalty, rank.tokens)))
309 for t in tlist.tokens:
310 heapq.heappush(todo, (neglen - 1, tlist.end,
311 rank.with_token(t, chgpenalty)))
312 elif tlist.end == trange.end:
313 if tlist.ttype == qmod.TOKEN_PARTIAL:
314 ranks.append(dbf.RankedTokens(rank.penalty
315 + max(t.penalty for t in tlist.tokens),
318 ranks.extend(rank.with_token(t, 0.0) for t in tlist.tokens)
320 # Too many variants, bail out and only add
321 # Worst-case Fallback: sum of penalty of partials
322 name_partials = self.query.get_partials_list(trange)
323 default = sum(t.penalty for t in name_partials) + 0.2
324 ranks.append(dbf.RankedTokens(rank.penalty + default, []))
325 # Bail out of outer loop
329 ranks.sort(key=lambda r: len(r.tokens))
330 default = ranks[0].penalty + 0.3
332 ranks.sort(key=lambda r: r.penalty)
334 return dbf.FieldRanking('nameaddress_vector', default, ranks)
336 def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
337 """ Collect the tokens for the non-name search fields in the
340 sdata = dbf.SearchData()
341 sdata.penalty = assignment.penalty
342 if assignment.country:
343 tokens = self.get_country_tokens(assignment.country)
346 sdata.set_strings('countries', tokens)
347 elif self.details.countries:
348 sdata.countries = dbf.WeightedStrings(self.details.countries,
349 [0.0] * len(self.details.countries))
350 if assignment.housenumber:
351 sdata.set_strings('housenumbers',
352 self.query.get_tokens(assignment.housenumber,
353 qmod.TOKEN_HOUSENUMBER))
354 if assignment.postcode:
355 sdata.set_strings('postcodes',
356 self.query.get_tokens(assignment.postcode,
357 qmod.TOKEN_POSTCODE))
358 if assignment.qualifier:
359 tokens = self.get_qualifier_tokens(assignment.qualifier)
362 sdata.set_qualifiers(tokens)
363 elif self.details.categories:
364 sdata.qualifiers = dbf.WeightedCategories(self.details.categories,
365 [0.0] * len(self.details.categories))
367 if assignment.address:
368 if not assignment.name and assignment.housenumber:
369 # housenumber search: the first item needs to be handled like
370 # a name in ranking or penalties are not comparable with
372 sdata.set_ranking([self.get_name_ranking(assignment.address[0],
373 db_field='nameaddress_vector')]
374 + [self.get_addr_ranking(r) for r in assignment.address[1:]])
376 sdata.set_ranking([self.get_addr_ranking(r) for r in assignment.address])
382 def get_country_tokens(self, trange: qmod.TokenRange) -> List[qmod.Token]:
383 """ Return the list of country tokens for the given range,
384 optionally filtered by the country list from the details
387 tokens = self.query.get_tokens(trange, qmod.TOKEN_COUNTRY)
388 if self.details.countries:
389 tokens = [t for t in tokens if t.lookup_word in self.details.countries]
393 def get_qualifier_tokens(self, trange: qmod.TokenRange) -> List[qmod.Token]:
394 """ Return the list of qualifier tokens for the given range,
395 optionally filtered by the qualifier list from the details
398 tokens = self.query.get_tokens(trange, qmod.TOKEN_QUALIFIER)
399 if self.details.categories:
400 tokens = [t for t in tokens if t.get_category() in self.details.categories]
404 def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
405 """ Collect tokens for near items search or use the categories
406 requested per parameter.
407 Returns None if no category search is requested.
409 if assignment.near_item:
410 tokens: Dict[Tuple[str, str], float] = {}
411 for t in self.query.get_tokens(assignment.near_item, qmod.TOKEN_NEAR_ITEM):
412 cat = t.get_category()
413 # The category of a near search will be that of near_item.
414 # Thus, if search is restricted to a category parameter,
415 # the two sets must intersect.
416 if (not self.details.categories or cat in self.details.categories)\
417 and t.penalty < tokens.get(cat, 1000.0):
418 tokens[cat] = t.penalty
419 return dbf.WeightedCategories(list(tokens.keys()), list(tokens.values()))
424 PENALTY_WORDCHANGE = {
425 qmod.BREAK_START: 0.0,
427 qmod.BREAK_PHRASE: 0.0,
428 qmod.BREAK_SOFT_PHRASE: 0.0,
429 qmod.BREAK_WORD: 0.1,
430 qmod.BREAK_PART: 0.2,
431 qmod.BREAK_TOKEN: 0.4