from typing import Optional, List, Callable, Type, Tuple
import sqlalchemy as sa
-from geoalchemy2 import WKTElement
from nominatim.typing import SaColumn, SaSelect, SaFromClause, SaLabel, SaRow
from nominatim.api.connection import SearchConnection
import nominatim.api.results as nres
from nominatim.api.logging import log
-from nominatim.api.types import AnyPoint, DataLayer, LookupDetails, GeometryFormat, Bbox
+from nominatim.api.types import AnyPoint, DataLayer, ReverseDetails, GeometryFormat, Bbox
# In SQLAlchemy expression which compare with NULL need to be expressed with
# the equal sign.
centroid = t.c.centroid
else:
distance = t.c.geometry.ST_Distance(wkt)
- centroid = sa.case(
- (t.c.geometry.ST_GeometryType().in_(('ST_LineString',
- 'ST_MultiLineString')),
- t.c.geometry.ST_ClosestPoint(wkt)),
- else_=t.c.centroid).label('centroid')
+ centroid = sa.case((t.c.geometry.is_line_like(), t.c.geometry.ST_ClosestPoint(wkt)),
+ else_=t.c.centroid).label('centroid')
return sa.select(t.c.place_id, t.c.osm_type, t.c.osm_id, t.c.name,
else_=table.c.linegeo.ST_LineInterpolatePoint(rounded_pos)).label('centroid')
-def _locate_interpolation(table: SaFromClause, wkt: WKTElement) -> SaLabel:
+def _locate_interpolation(table: SaFromClause, wkt: str) -> SaLabel:
""" Given a position, locate the closest point on the line.
"""
- return sa.case((table.c.linegeo.ST_GeometryType() == 'ST_LineString',
- sa.func.ST_LineLocatePoint(table.c.linegeo, wkt)),
+ return sa.case((table.c.linegeo.is_line_like(), table.c.linegeo.ST_LineLocatePoint(wkt)),
else_=0).label('position')
coordinate.
"""
- def __init__(self, conn: SearchConnection, max_rank: int, layer: DataLayer,
- details: LookupDetails) -> None:
+ def __init__(self, conn: SearchConnection, params: ReverseDetails) -> None:
self.conn = conn
- self.max_rank = max_rank
- self.layer = layer
- self.details = details
+ self.params = params
+
+
+ @property
+ def max_rank(self) -> int:
+ """ Return the maximum configured rank.
+ """
+ return self.params.max_rank
+
+
+ def has_geometries(self) -> bool:
+ """ Check if any geometries are requested.
+ """
+ return bool(self.params.geometry_output)
+
def layer_enabled(self, *layer: DataLayer) -> bool:
""" Return true when any of the given layer types are requested.
"""
- return any(self.layer & l for l in layer)
+ return any(self.params.layers & l for l in layer)
def layer_disabled(self, *layer: DataLayer) -> bool:
""" Return true when none of the given layer types is requested.
"""
- return not any(self.layer & l for l in layer)
+ return not any(self.params.layers & l for l in layer)
def has_feature_layers(self) -> bool:
return self.layer_enabled(DataLayer.RAILWAY, DataLayer.MANMADE, DataLayer.NATURAL)
def _add_geometry_columns(self, sql: SaSelect, col: SaColumn) -> SaSelect:
- if not self.details.geometry_output:
+ if not self.has_geometries():
return sql
out = []
- if self.details.geometry_simplification > 0.0:
- col = col.ST_SimplifyPreserveTopology(self.details.geometry_simplification)
+ if self.params.geometry_simplification > 0.0:
+ col = sa.func.ST_SimplifyPreserveTopology(col, self.params.geometry_simplification)
- if self.details.geometry_output & GeometryFormat.GEOJSON:
- out.append(col.ST_AsGeoJSON().label('geometry_geojson'))
- if self.details.geometry_output & GeometryFormat.TEXT:
- out.append(col.ST_AsText().label('geometry_text'))
- if self.details.geometry_output & GeometryFormat.KML:
- out.append(col.ST_AsKML().label('geometry_kml'))
- if self.details.geometry_output & GeometryFormat.SVG:
- out.append(col.ST_AsSVG().label('geometry_svg'))
+ if self.params.geometry_output & GeometryFormat.GEOJSON:
+ out.append(sa.func.ST_AsGeoJSON(col).label('geometry_geojson'))
+ if self.params.geometry_output & GeometryFormat.TEXT:
+ out.append(sa.func.ST_AsText(col).label('geometry_text'))
+ if self.params.geometry_output & GeometryFormat.KML:
+ out.append(sa.func.ST_AsKML(col).label('geometry_kml'))
+ if self.params.geometry_output & GeometryFormat.SVG:
+ out.append(sa.func.ST_AsSVG(col).label('geometry_svg'))
return sql.add_columns(*out)
return table.c.class_.in_(tuple(include))
- async def _find_closest_street_or_poi(self, wkt: WKTElement,
+ async def _find_closest_street_or_poi(self, wkt: str,
distance: float) -> Optional[SaRow]:
""" Look up the closest rank 26+ place in the database, which
is closer than the given distance.
.where(t.c.geometry.ST_DWithin(wkt, distance))\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
- .where(sa.or_(t.c.geometry.ST_GeometryType()
- .not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(sa.not_(t.c.geometry.is_area()),
t.c.centroid.ST_Distance(wkt) < distance))\
.order_by('distance')\
.limit(1)
if self.layer_enabled(DataLayer.POI) and self.max_rank == 30:
restrict.append(sa.and_(t.c.rank_search == 30,
t.c.class_.not_in(('place', 'building')),
- t.c.geometry.ST_GeometryType() != 'ST_LineString'))
+ sa.not_(t.c.geometry.is_line_like())))
if self.has_feature_layers():
restrict.append(sa.and_(t.c.rank_search.between(26, self.max_rank),
t.c.rank_address == 0,
async def _find_housenumber_for_street(self, parent_place_id: int,
- wkt: WKTElement) -> Optional[SaRow]:
+ wkt: str) -> Optional[SaRow]:
t = self.conn.t.placex
sql = _select_from_placex(t, wkt)\
async def _find_interpolation_for_street(self, parent_place_id: Optional[int],
- wkt: WKTElement,
+ wkt: str,
distance: float) -> Optional[SaRow]:
t = self.conn.t.osmline
if parent_place_id is not None:
sql = sql.where(t.c.parent_place_id == parent_place_id)
- inner = sql.subquery()
+ inner = sql.subquery('ipol')
sql = sa.select(inner.c.place_id, inner.c.osm_id,
inner.c.parent_place_id, inner.c.address,
inner.c.postcode, inner.c.country_code,
inner.c.distance)
- if self.details.geometry_output:
- sub = sql.subquery()
- sql = self._add_geometry_columns(sql, sub.c.centroid)
+ if self.has_geometries():
+ sub = sql.subquery('geom')
+ sql = self._add_geometry_columns(sa.select(sub), sub.c.centroid)
return (await self.conn.execute(sql)).one_or_none()
async def _find_tiger_number_for_street(self, parent_place_id: int,
parent_type: str, parent_id: int,
- wkt: WKTElement) -> Optional[SaRow]:
+ wkt: str) -> Optional[SaRow]:
t = self.conn.t.tiger
inner = sa.select(t,
.where(t.c.parent_place_id == parent_place_id)\
.order_by('distance')\
.limit(1)\
- .subquery()
+ .subquery('tiger')
sql = sa.select(inner.c.place_id,
inner.c.parent_place_id,
inner.c.postcode,
inner.c.distance)
- if self.details.geometry_output:
- sub = sql.subquery()
- sql = self._add_geometry_columns(sql, sub.c.centroid)
+ if self.has_geometries():
+ sub = sql.subquery('geom')
+ sql = self._add_geometry_columns(sa.select(sub), sub.c.centroid)
return (await self.conn.execute(sql)).one_or_none()
async def lookup_street_poi(self,
- wkt: WKTElement) -> Tuple[Optional[SaRow], RowFunc]:
+ wkt: str) -> Tuple[Optional[SaRow], RowFunc]:
""" Find a street or POI/address for the given WKT point.
"""
log().section('Reverse lookup on street/address level')
return row, row_func
- async def _lookup_area_address(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def _lookup_area_address(self, wkt: str) -> Optional[SaRow]:
""" Lookup large addressable areas for the given WKT point.
"""
log().comment('Reverse lookup by larger address area features')
inner = sa.select(t, sa.literal(0.0).label('distance'))\
.where(t.c.rank_search.between(5, self.max_rank))\
.where(t.c.rank_address.between(5, 25))\
- .where(t.c.geometry.ST_GeometryType().in_(('ST_Polygon', 'ST_MultiPolygon')))\
+ .where(t.c.geometry.is_area())\
.where(t.c.geometry.intersects(wkt))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.type != 'postcode')\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
- .subquery()
+ .subquery('area')
sql = _select_from_placex(inner)\
.where(inner.c.geometry.ST_Contains(wkt))\
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
- .subquery()
+ .subquery('places')
touter = self.conn.t.placex.alias('outer')
sql = _select_from_placex(inner)\
return address_row
- async def _lookup_area_others(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def _lookup_area_others(self, wkt: str) -> Optional[SaRow]:
t = self.conn.t.placex
inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
.subquery()
sql = _select_from_placex(inner)\
- .where(sa.or_(inner.c.geometry.ST_GeometryType()
- .not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(not inner.c.geometry.is_area(),
inner.c.geometry.ST_Contains(wkt)))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
return row
- async def lookup_area(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def lookup_area(self, wkt: str) -> Optional[SaRow]:
""" Lookup large areas for the given WKT point.
"""
log().section('Reverse lookup by larger area features')
return _get_closest(address_row, other_row)
- async def lookup_country(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def lookup_country(self, wkt: str) -> Optional[SaRow]:
""" Lookup the country for the given WKT point.
"""
log().section('Reverse lookup by country code')
""" Look up a single coordinate. Returns the place information,
if a place was found near the coordinates or None otherwise.
"""
- log().function('reverse_lookup',
- coord=coord, max_rank=self.max_rank,
- layer=self.layer, details=self.details)
+ log().function('reverse_lookup', coord=coord, params=self.params)
- wkt = WKTElement(f'POINT({coord[0]} {coord[1]})', srid=4326)
+ wkt = f'POINT({coord[0]} {coord[1]})'
row: Optional[SaRow] = None
row_func: RowFunc = nres.create_from_placex_row
result.distance = row.distance
if hasattr(row, 'bbox'):
result.bbox = Bbox.from_wkb(row.bbox.data)
- await nres.add_result_details(self.conn, result, self.details)
+ await nres.add_result_details(self.conn, [result], self.params)
return result