from typing import cast, Any, Mapping, Sequence, Union, Dict, Optional, Set
import sqlalchemy as sa
-from geoalchemy2 import Geometry
from sqlalchemy.ext.asyncio import AsyncConnection
from nominatim.typing import SaFromClause
from nominatim.db.sqlalchemy_schema import SearchTables
+from nominatim.db.sqlalchemy_types import Geometry
from nominatim.api.logging import log
class SearchConnection:
return sa.Table(tablename, self.t.meta,
sa.Column('place_id', sa.BigInteger),
- sa.Column('centroid', Geometry(srid=4326, spatial_index=False)))
+ sa.Column('centroid', Geometry))
from typing import Optional, List, Callable, Type, Tuple
import sqlalchemy as sa
-from geoalchemy2 import WKTElement
from nominatim.typing import SaColumn, SaSelect, SaFromClause, SaLabel, SaRow
from nominatim.api.connection import SearchConnection
centroid = t.c.centroid
else:
distance = t.c.geometry.ST_Distance(wkt)
- centroid = sa.case(
- (t.c.geometry.ST_GeometryType().in_(('ST_LineString',
- 'ST_MultiLineString')),
- t.c.geometry.ST_ClosestPoint(wkt)),
- else_=t.c.centroid).label('centroid')
+ centroid = sa.case((t.c.geometry.is_line_like(), t.c.geometry.ST_ClosestPoint(wkt)),
+ else_=t.c.centroid).label('centroid')
return sa.select(t.c.place_id, t.c.osm_type, t.c.osm_id, t.c.name,
else_=table.c.linegeo.ST_LineInterpolatePoint(rounded_pos)).label('centroid')
-def _locate_interpolation(table: SaFromClause, wkt: WKTElement) -> SaLabel:
+def _locate_interpolation(table: SaFromClause, wkt: str) -> SaLabel:
""" Given a position, locate the closest point on the line.
"""
- return sa.case((table.c.linegeo.ST_GeometryType() == 'ST_LineString',
- sa.func.ST_LineLocatePoint(table.c.linegeo, wkt)),
+ return sa.case((table.c.linegeo.is_line_like(), table.c.linegeo.ST_LineLocatePoint(wkt)),
else_=0).label('position')
out = []
if self.params.geometry_simplification > 0.0:
- col = col.ST_SimplifyPreserveTopology(self.params.geometry_simplification)
+ col = sa.func.ST_SimplifyPreserveTopology(col, self.params.geometry_simplification)
if self.params.geometry_output & GeometryFormat.GEOJSON:
- out.append(col.ST_AsGeoJSON().label('geometry_geojson'))
+ out.append(sa.func.ST_AsGeoJSON(col).label('geometry_geojson'))
if self.params.geometry_output & GeometryFormat.TEXT:
- out.append(col.ST_AsText().label('geometry_text'))
+ out.append(sa.func.ST_AsText(col).label('geometry_text'))
if self.params.geometry_output & GeometryFormat.KML:
- out.append(col.ST_AsKML().label('geometry_kml'))
+ out.append(sa.func.ST_AsKML(col).label('geometry_kml'))
if self.params.geometry_output & GeometryFormat.SVG:
- out.append(col.ST_AsSVG().label('geometry_svg'))
+ out.append(sa.func.ST_AsSVG(col).label('geometry_svg'))
return sql.add_columns(*out)
return table.c.class_.in_(tuple(include))
- async def _find_closest_street_or_poi(self, wkt: WKTElement,
+ async def _find_closest_street_or_poi(self, wkt: str,
distance: float) -> Optional[SaRow]:
""" Look up the closest rank 26+ place in the database, which
is closer than the given distance.
.where(t.c.geometry.ST_DWithin(wkt, distance))\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
- .where(sa.or_(t.c.geometry.ST_GeometryType()
- .not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(sa.not_(t.c.geometry.is_area()),
t.c.centroid.ST_Distance(wkt) < distance))\
.order_by('distance')\
.limit(1)
if self.layer_enabled(DataLayer.POI) and self.max_rank == 30:
restrict.append(sa.and_(t.c.rank_search == 30,
t.c.class_.not_in(('place', 'building')),
- t.c.geometry.ST_GeometryType() != 'ST_LineString'))
+ sa.not_(t.c.geometry.is_line_like())))
if self.has_feature_layers():
restrict.append(sa.and_(t.c.rank_search.between(26, self.max_rank),
t.c.rank_address == 0,
async def _find_housenumber_for_street(self, parent_place_id: int,
- wkt: WKTElement) -> Optional[SaRow]:
+ wkt: str) -> Optional[SaRow]:
t = self.conn.t.placex
sql = _select_from_placex(t, wkt)\
async def _find_interpolation_for_street(self, parent_place_id: Optional[int],
- wkt: WKTElement,
+ wkt: str,
distance: float) -> Optional[SaRow]:
t = self.conn.t.osmline
async def _find_tiger_number_for_street(self, parent_place_id: int,
parent_type: str, parent_id: int,
- wkt: WKTElement) -> Optional[SaRow]:
+ wkt: str) -> Optional[SaRow]:
t = self.conn.t.tiger
inner = sa.select(t,
async def lookup_street_poi(self,
- wkt: WKTElement) -> Tuple[Optional[SaRow], RowFunc]:
+ wkt: str) -> Tuple[Optional[SaRow], RowFunc]:
""" Find a street or POI/address for the given WKT point.
"""
log().section('Reverse lookup on street/address level')
return row, row_func
- async def _lookup_area_address(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def _lookup_area_address(self, wkt: str) -> Optional[SaRow]:
""" Lookup large addressable areas for the given WKT point.
"""
log().comment('Reverse lookup by larger address area features')
inner = sa.select(t, sa.literal(0.0).label('distance'))\
.where(t.c.rank_search.between(5, self.max_rank))\
.where(t.c.rank_address.between(5, 25))\
- .where(t.c.geometry.ST_GeometryType().in_(('ST_Polygon', 'ST_MultiPolygon')))\
+ .where(t.c.geometry.is_area())\
.where(t.c.geometry.intersects(wkt))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
return address_row
- async def _lookup_area_others(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def _lookup_area_others(self, wkt: str) -> Optional[SaRow]:
t = self.conn.t.placex
inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
.subquery()
sql = _select_from_placex(inner)\
- .where(sa.or_(inner.c.geometry.ST_GeometryType()
- .not_in(('ST_Polygon', 'ST_MultiPolygon')),
+ .where(sa.or_(not inner.c.geometry.is_area(),
inner.c.geometry.ST_Contains(wkt)))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
return row
- async def lookup_area(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def lookup_area(self, wkt: str) -> Optional[SaRow]:
""" Lookup large areas for the given WKT point.
"""
log().section('Reverse lookup by larger area features')
return _get_closest(address_row, other_row)
- async def lookup_country(self, wkt: WKTElement) -> Optional[SaRow]:
+ async def lookup_country(self, wkt: str) -> Optional[SaRow]:
""" Lookup the country for the given WKT point.
"""
log().section('Reverse lookup by country code')
log().function('reverse_lookup', coord=coord, params=self.params)
- wkt = WKTElement(f'POINT({coord[0]} {coord[1]})', srid=4326)
+ wkt = f'POINT({coord[0]} {coord[1]})'
row: Optional[SaRow] = None
row_func: RowFunc = nres.create_from_placex_row
import math
from struct import unpack
-from geoalchemy2 import WKTElement
-import geoalchemy2.functions
+import sqlalchemy as sa
from nominatim.errors import UsageError
return Point(x, y)
- def sql_value(self) -> WKTElement:
+ def sql_value(self) -> str:
""" Create an SQL expression for the point.
"""
- return WKTElement(f'POINT({self.x} {self.y})', srid=4326)
+ return f'POINT({self.x} {self.y})'
def sql_value(self) -> Any:
""" Create an SQL expression for the box.
"""
- return geoalchemy2.functions.ST_MakeEnvelope(*self.coords, 4326)
+ return sa.func.ST_MakeEnvelope(*self.coords, 4326)
def contains(self, pt: Point) -> bool:
from typing import Any
import sqlalchemy as sa
-from geoalchemy2 import Geometry
from sqlalchemy.dialects.postgresql import HSTORE, ARRAY, JSONB
from sqlalchemy.dialects.sqlite import JSON as sqlite_json
+from nominatim.db.sqlalchemy_types import Geometry
+
class PostgresTypes:
""" Type definitions for complex types as used in Postgres variants.
"""
sa.Column('name', self.types.Composite),
sa.Column('address', self.types.Composite),
sa.Column('extratags', self.types.Composite),
- sa.Column('geometry', Geometry(srid=4326), nullable=False),
+ sa.Column('geometry', Geometry, nullable=False),
sa.Column('wikipedia', sa.Text),
sa.Column('country_code', sa.String(2)),
sa.Column('housenumber', sa.Text),
sa.Column('postcode', sa.Text),
- sa.Column('centroid', Geometry(srid=4326, spatial_index=False)))
+ sa.Column('centroid', Geometry))
self.addressline = sa.Table('place_addressline', meta,
sa.Column('place_id', sa.BigInteger, index=True),
sa.Column('indexed_date', sa.DateTime),
sa.Column('country_code', sa.String(2)),
sa.Column('postcode', sa.Text, index=True),
- sa.Column('geometry', Geometry(srid=4326)))
+ sa.Column('geometry', Geometry))
self.osmline = sa.Table('location_property_osmline', meta,
sa.Column('place_id', sa.BigInteger, nullable=False, unique=True),
sa.Column('step', sa.SmallInteger),
sa.Column('partition', sa.SmallInteger),
sa.Column('indexed_status', sa.SmallInteger),
- sa.Column('linegeo', Geometry(srid=4326)),
+ sa.Column('linegeo', Geometry),
sa.Column('address', self.types.Composite),
sa.Column('postcode', sa.Text),
sa.Column('country_code', sa.String(2)))
self.country_grid = sa.Table('country_osm_grid', meta,
sa.Column('country_code', sa.String(2)),
sa.Column('area', sa.Float),
- sa.Column('geometry', Geometry(srid=4326)))
+ sa.Column('geometry', Geometry))
# The following tables are not necessarily present.
self.search_name = sa.Table('search_name', meta,
sa.Column('name_vector', self.types.IntArray, index=True),
sa.Column('nameaddress_vector', self.types.IntArray, index=True),
sa.Column('country_code', sa.String(2)),
- sa.Column('centroid', Geometry(srid=4326)))
+ sa.Column('centroid', Geometry))
self.tiger = sa.Table('location_property_tiger', meta,
sa.Column('place_id', sa.BigInteger),
sa.Column('endnumber', sa.Integer),
sa.Column('step', sa.SmallInteger),
sa.Column('partition', sa.SmallInteger),
- sa.Column('linegeo', Geometry(srid=4326, spatial_index=False)),
+ sa.Column('linegeo', Geometry),
sa.Column('postcode', sa.Text))
--- /dev/null
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2023 by the Nominatim developer community.
+# For a full list of authors see the git log.
+"""
+Custom types for SQLAlchemy.
+"""
+from typing import Callable, Any
+
+import sqlalchemy as sa
+import sqlalchemy.types as types
+
+from nominatim.typing import SaColumn
+
+class Geometry(types.UserDefinedType[Any]):
+ """ Simplified type decorator for PostGIS geometry. This type
+ only supports geometries in 4326 projection.
+ """
+ cache_ok = True
+
+ def __init__(self, subtype: str = 'Geometry'):
+ self.subtype = subtype
+
+
+ def get_col_spec(self) -> str:
+ return f'GEOMETRY({self.subtype}, 4326)'
+
+
+ def bind_processor(self, dialect: sa.Dialect) -> Callable[[Any], str]:
+ def process(value: Any) -> str:
+ assert isinstance(value, str)
+ return value
+ return process
+
+
+ def result_processor(self, dialect: sa.Dialect, coltype: object) -> Callable[[Any], str]:
+ def process(value: Any) -> str:
+ assert isinstance(value, str)
+ return value
+ return process
+
+
+ def bind_expression(self, bindvalue: sa.BindParameter[Any]) -> SaColumn:
+ return sa.func.ST_GeomFromText(bindvalue, type_=self)
+
+
+ class comparator_factory(types.UserDefinedType.Comparator):
+
+ def is_line_like(self) -> SaColumn:
+ return sa.func.ST_GeometryType(self, type_=sa.String).in_(('ST_LineString',
+ 'ST_MultiLineString'))
+
+ def is_area(self) -> SaColumn:
+ return sa.func.ST_GeometryType(self, type_=sa.String).in_(('ST_Polygon',
+ 'ST_MultiPolygon'))
+
+
+ def ST_DWithin(self, other: SaColumn, distance: SaColumn) -> SaColumn:
+ return sa.func.ST_DWithin(self, other, distance, type_=sa.Float)
+
+
+ def ST_Distance(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_Distance(self, other, type_=sa.Float)
+
+
+ def ST_Contains(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_Contains(self, other, type_=sa.Float)
+
+
+ def ST_ClosestPoint(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_ClosestPoint(self, other, type_=Geometry)
+
+
+ def ST_Buffer(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_Buffer(self, other, type_=Geometry)
+
+
+ def ST_Expand(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_Expand(self, other, type_=Geometry)
+
+
+ def ST_Centroid(self) -> SaColumn:
+ return sa.func.ST_Centroid(self, type_=Geometry)
+
+
+ def ST_LineInterpolatePoint(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_LineInterpolatePoint(self, other, type_=Geometry)
+
+
+ def ST_LineLocatePoint(self, other: SaColumn) -> SaColumn:
+ return sa.func.ST_LineLocatePoint(self, other, type_=sa.Float)