# 'too-many-ancestors' is triggered already by deriving from UserDict
# 'not-context-manager' disabled because it causes false positives once
# typed Python is enabled. See also https://github.com/PyCQA/pylint/issues/5273
-disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison
+disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison,attribute-defined-outside-init
-good-names=i,x,y,m,t,fd,db,cc,x1,x2,y1,y2,pt,k,v
+good-names=i,j,x,y,m,t,fd,db,cc,x1,x2,y1,y2,pt,k,v
"""
Functions for specialised logging with HTML output.
"""
-from typing import Any, cast
+from typing import Any, Iterator, Optional, List, cast
from contextvars import ContextVar
import textwrap
import io
"""
+ def table_dump(self, heading: str, rows: Iterator[Optional[List[Any]]]) -> None:
+ """ Print the table generated by the generator function.
+ """
+
+
def sql(self, conn: AsyncConnection, statement: 'sa.Executable') -> None:
""" Print the SQL for the given statement.
"""
def var_dump(self, heading: str, var: Any) -> None:
+ if callable(var):
+ var = var()
+
self._write(f'<h5>{heading}</h5>{self._python_var(var)}')
+ def table_dump(self, heading: str, rows: Iterator[Optional[List[Any]]]) -> None:
+ head = next(rows)
+ assert head
+ self._write(f'<table><thead><tr><th colspan="{len(head)}">{heading}</th></tr><tr>')
+ for cell in head:
+ self._write(f'<th>{cell}</th>')
+ self._write('</tr></thead><tbody>')
+ for row in rows:
+ if row is not None:
+ self._write('<tr>')
+ for cell in row:
+ self._write(f'<td>{cell}</td>')
+ self._write('</tr>')
+ self._write('</tbody></table>')
+
+
def sql(self, conn: AsyncConnection, statement: 'sa.Executable') -> None:
sqlstr = self.format_sql(conn, statement)
if CODE_HIGHLIGHT:
def var_dump(self, heading: str, var: Any) -> None:
+ if callable(var):
+ var = var()
+
self._write(f'{heading}:\n {self._python_var(var)}\n\n')
+ def table_dump(self, heading: str, rows: Iterator[Optional[List[Any]]]) -> None:
+ self._write(f'{heading}:\n')
+ data = [list(map(self._python_var, row)) if row else None for row in rows]
+ assert data[0] is not None
+ num_cols = len(data[0])
+
+ maxlens = [max(len(d[i]) for d in data if d) for i in range(num_cols)]
+ tablewidth = sum(maxlens) + 3 * num_cols + 1
+ row_format = '| ' +' | '.join(f'{{:<{l}}}' for l in maxlens) + ' |\n'
+ self._write('-'*tablewidth + '\n')
+ self._write(row_format.format(*data[0]))
+ self._write('-'*tablewidth + '\n')
+ for row in data[1:]:
+ if row:
+ self._write(row_format.format(*row))
+ else:
+ self._write('-'*tablewidth + '\n')
+ if data[-1]:
+ self._write('-'*tablewidth + '\n')
+
+
def sql(self, conn: AsyncConnection, statement: 'sa.Executable') -> None:
sqlstr = '\n| '.join(textwrap.wrap(self.format_sql(conn, statement), width=78))
self._write(f"| {sqlstr}\n\n")
--- /dev/null
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2023 by the Nominatim developer community.
+# For a full list of authors see the git log.
+"""
+Implementation of query analysis for the ICU tokenizer.
+"""
+from typing import Tuple, Dict, List, Optional, NamedTuple, Iterator, Any, cast
+from copy import copy
+from collections import defaultdict
+import dataclasses
+import difflib
+
+from icu import Transliterator
+
+import sqlalchemy as sa
+
+from nominatim.typing import SaRow
+from nominatim.api.connection import SearchConnection
+from nominatim.api.logging import log
+from nominatim.api.search import query as qmod
+
+# XXX: TODO
+class AbstractQueryAnalyzer:
+ pass
+
+
+DB_TO_TOKEN_TYPE = {
+ 'W': qmod.TokenType.WORD,
+ 'w': qmod.TokenType.PARTIAL,
+ 'H': qmod.TokenType.HOUSENUMBER,
+ 'P': qmod.TokenType.POSTCODE,
+ 'C': qmod.TokenType.COUNTRY
+}
+
+
+class QueryPart(NamedTuple):
+ """ Normalized and transliterated form of a single term in the query.
+ When the term came out of a split during the transliteration,
+ the normalized string is the full word before transliteration.
+ The word number keeps track of the word before transliteration
+ and can be used to identify partial transliterated terms.
+ """
+ token: str
+ normalized: str
+ word_number: int
+
+
+QueryParts = List[QueryPart]
+WordDict = Dict[str, List[qmod.TokenRange]]
+
+def yield_words(terms: List[QueryPart], start: int) -> Iterator[Tuple[str, qmod.TokenRange]]:
+ """ Return all combinations of words in the terms list after the
+ given position.
+ """
+ total = len(terms)
+ for first in range(start, total):
+ word = terms[first].token
+ yield word, qmod.TokenRange(first, first + 1)
+ for last in range(first + 1, min(first + 20, total)):
+ word = ' '.join((word, terms[last].token))
+ yield word, qmod.TokenRange(first, last + 1)
+
+
+@dataclasses.dataclass
+class ICUToken(qmod.Token):
+ """ Specialised token for ICU tokenizer.
+ """
+ word_token: str
+ info: Optional[Dict[str, Any]]
+
+ def get_category(self) -> Tuple[str, str]:
+ assert self.info
+ return self.info.get('class', ''), self.info.get('type', '')
+
+
+ def rematch(self, norm: str) -> None:
+ """ Check how well the token matches the given normalized string
+ and add a penalty, if necessary.
+ """
+ if not self.lookup_word:
+ return
+
+ seq = difflib.SequenceMatcher(a=self.lookup_word, b=norm)
+ distance = 0
+ for tag, afrom, ato, bfrom, bto in seq.get_opcodes():
+ if tag == 'delete' and (afrom == 0 or ato == len(self.lookup_word)):
+ distance += 1
+ elif tag == 'replace':
+ distance += max((ato-afrom), (bto-bfrom))
+ elif tag != 'equal':
+ distance += abs((ato-afrom) - (bto-bfrom))
+ self.penalty += (distance/len(self.lookup_word))
+
+
+ @staticmethod
+ def from_db_row(row: SaRow) -> 'ICUToken':
+ """ Create a ICUToken from the row of the word table.
+ """
+ count = 1 if row.info is None else row.info.get('count', 1)
+
+ penalty = 0.0
+ if row.type == 'w':
+ penalty = 0.3
+ elif row.type == 'H':
+ penalty = sum(0.1 for c in row.word_token if c != ' ' and not c.isdigit())
+ if all(not c.isdigit() for c in row.word_token):
+ penalty += 0.2 * (len(row.word_token) - 1)
+
+ if row.info is None:
+ lookup_word = row.word
+ else:
+ lookup_word = row.info.get('lookup', row.word)
+ if lookup_word:
+ lookup_word = lookup_word.split('@', 1)[0]
+ else:
+ lookup_word = row.word_token
+
+ return ICUToken(penalty=penalty, token=row.word_id, count=count,
+ lookup_word=lookup_word, is_indexed=True,
+ word_token=row.word_token, info=row.info)
+
+
+
+class ICUQueryAnalyzer(AbstractQueryAnalyzer):
+ """ Converter for query strings into a tokenized query
+ using the tokens created by a ICU tokenizer.
+ """
+
+ def __init__(self, conn: SearchConnection) -> None:
+ self.conn = conn
+
+
+ async def setup(self) -> None:
+ """ Set up static data structures needed for the analysis.
+ """
+ rules = await self.conn.get_property('tokenizer_import_normalisation')
+ self.normalizer = Transliterator.createFromRules("normalization", rules)
+ rules = await self.conn.get_property('tokenizer_import_transliteration')
+ self.transliterator = Transliterator.createFromRules("transliteration", rules)
+
+ if 'word' not in self.conn.t.meta.tables:
+ sa.Table('word', self.conn.t.meta,
+ sa.Column('word_id', sa.Integer),
+ sa.Column('word_token', sa.Text, nullable=False),
+ sa.Column('type', sa.Text, nullable=False),
+ sa.Column('word', sa.Text),
+ sa.Column('info', self.conn.t.types.Json))
+
+
+ async def analyze_query(self, phrases: List[qmod.Phrase]) -> qmod.QueryStruct:
+ """ Analyze the given list of phrases and return the
+ tokenized query.
+ """
+ log().section('Analyze query (using ICU tokenizer)')
+ normalized = list(filter(lambda p: p.text,
+ (qmod.Phrase(p.ptype, self.normalizer.transliterate(p.text))
+ for p in phrases)))
+ query = qmod.QueryStruct(normalized)
+ log().var_dump('Normalized query', query.source)
+ if not query.source:
+ return query
+
+ parts, words = self.split_query(query)
+ log().var_dump('Transliterated query', lambda: _dump_transliterated(query, parts))
+
+ for row in await self.lookup_in_db(list(words.keys())):
+ for trange in words[row.word_token]:
+ token = ICUToken.from_db_row(row)
+ if row.type == 'S':
+ if row.info['op'] in ('in', 'near'):
+ if trange.start == 0:
+ query.add_token(trange, qmod.TokenType.CATEGORY, token)
+ else:
+ query.add_token(trange, qmod.TokenType.QUALIFIER, token)
+ if trange.start == 0 or trange.end == query.num_token_slots():
+ token = copy(token)
+ token.penalty += 0.1 * (query.num_token_slots())
+ query.add_token(trange, qmod.TokenType.CATEGORY, token)
+ else:
+ query.add_token(trange, DB_TO_TOKEN_TYPE[row.type], token)
+
+ self.add_extra_tokens(query, parts)
+ self.rerank_tokens(query, parts)
+
+ log().table_dump('Word tokens', _dump_word_tokens(query))
+
+ return query
+
+
+ def split_query(self, query: qmod.QueryStruct) -> Tuple[QueryParts, WordDict]:
+ """ Transliterate the phrases and split them into tokens.
+
+ Returns the list of transliterated tokens together with their
+ normalized form and a dictionary of words for lookup together
+ with their position.
+ """
+ parts: QueryParts = []
+ phrase_start = 0
+ words = defaultdict(list)
+ wordnr = 0
+ for phrase in query.source:
+ query.nodes[-1].ptype = phrase.ptype
+ for word in phrase.text.split(' '):
+ trans = self.transliterator.transliterate(word)
+ if trans:
+ for term in trans.split(' '):
+ if term:
+ parts.append(QueryPart(term, word, wordnr))
+ query.add_node(qmod.BreakType.TOKEN, phrase.ptype)
+ query.nodes[-1].btype = qmod.BreakType.WORD
+ wordnr += 1
+ query.nodes[-1].btype = qmod.BreakType.PHRASE
+
+ for word, wrange in yield_words(parts, phrase_start):
+ words[word].append(wrange)
+
+ phrase_start = len(parts)
+ query.nodes[-1].btype = qmod.BreakType.END
+
+ return parts, words
+
+
+ async def lookup_in_db(self, words: List[str]) -> 'sa.Result[Any]':
+ """ Return the token information from the database for the
+ given word tokens.
+ """
+ t = self.conn.t.meta.tables['word']
+ return await self.conn.execute(t.select().where(t.c.word_token.in_(words)))
+
+
+ def add_extra_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
+ """ Add tokens to query that are not saved in the database.
+ """
+ for part, node, i in zip(parts, query.nodes, range(1000)):
+ if len(part.token) <= 4 and part[0].isdigit()\
+ and not node.has_tokens(i+1, qmod.TokenType.HOUSENUMBER):
+ query.add_token(qmod.TokenRange(i, i+1), qmod.TokenType.HOUSENUMBER,
+ ICUToken(0.5, 0, 1, part.token, True, part.token, None))
+
+
+ def rerank_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
+ """ Add penalties to tokens that depend on presence of other token.
+ """
+ for i, node, tlist in query.iter_token_lists():
+ if tlist.ttype == qmod.TokenType.POSTCODE:
+ for repl in node.starting:
+ if repl.end == tlist.end and repl.ttype != qmod.TokenType.POSTCODE \
+ and (repl.ttype != qmod.TokenType.HOUSENUMBER
+ or len(tlist.tokens[0].lookup_word) > 4):
+ repl.add_penalty(0.39)
+ elif tlist.ttype == qmod.TokenType.HOUSENUMBER:
+ if any(c.isdigit() for c in tlist.tokens[0].lookup_word):
+ for repl in node.starting:
+ if repl.end == tlist.end and repl.ttype != qmod.TokenType.HOUSENUMBER \
+ and (repl.ttype != qmod.TokenType.HOUSENUMBER
+ or len(tlist.tokens[0].lookup_word) <= 3):
+ repl.add_penalty(0.5 - tlist.tokens[0].penalty)
+ elif tlist.ttype not in (qmod.TokenType.COUNTRY, qmod.TokenType.PARTIAL):
+ norm = parts[i].normalized
+ for j in range(i + 1, tlist.end):
+ if parts[j - 1].word_number != parts[j].word_number:
+ norm += ' ' + parts[j].normalized
+ for token in tlist.tokens:
+ cast(ICUToken, token).rematch(norm)
+
+
+def _dump_transliterated(query: qmod.QueryStruct, parts: QueryParts) -> str:
+ out = query.nodes[0].btype.value
+ for node, part in zip(query.nodes[1:], parts):
+ out += part.token + node.btype.value
+ return out
+
+
+def _dump_word_tokens(query: qmod.QueryStruct) -> Iterator[List[Any]]:
+ yield ['type', 'token', 'word_token', 'lookup_word', 'penalty', 'count', 'info']
+ for node in query.nodes:
+ for tlist in node.starting:
+ for token in tlist.tokens:
+ t = cast(ICUToken, token)
+ yield [tlist.ttype.name, t.token, t.word_token or '',
+ t.lookup_word or '', t.penalty, t.count, t.info]
+
+
+async def create_query_analyzer(conn: SearchConnection) -> AbstractQueryAnalyzer:
+ """ Create and set up a new query analyzer for a database based
+ on the ICU tokenizer.
+ """
+ out = ICUQueryAnalyzer(conn)
+ await out.setup()
+
+ return out
"""
Datastructures for a tokenized query.
"""
-from typing import List, Tuple, Optional, NamedTuple
+from typing import List, Tuple, Optional, NamedTuple, Iterator
from abc import ABC, abstractmethod
import dataclasses
import enum
tokens: List[Token]
+ def add_penalty(self, penalty: float) -> None:
+ """ Add the given penalty to all tokens in the list.
+ """
+ for token in self.tokens:
+ token.penalty += penalty
+
+
@dataclasses.dataclass
class QueryNode:
""" A node of the querry representing a break between terms.
for i in range(trange.start, trange.end)]
+ def iter_token_lists(self) -> Iterator[Tuple[int, QueryNode, TokenList]]:
+ """ Iterator over all token lists in the query.
+ """
+ for i, node in enumerate(self.nodes):
+ for tlist in node.starting:
+ yield i, node, tlist
+
+
def find_lookup_word_by_id(self, token: int) -> str:
""" Find the first token with the given token ID and return
its lookup word. Returns 'None' if no such token exists.
--- /dev/null
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2023 by the Nominatim developer community.
+# For a full list of authors see the git log.
+"""
+Tests for query analyzer for ICU tokenizer.
+"""
+from pathlib import Path
+
+import pytest
+import pytest_asyncio
+
+from nominatim.api import NominatimAPIAsync
+from nominatim.api.search.query import Phrase, PhraseType, TokenType, BreakType
+import nominatim.api.search.icu_tokenizer as tok
+from nominatim.api.logging import set_log_output, get_and_disable
+
+async def add_word(conn, word_id, word_token, wtype, word, info = None):
+ t = conn.t.meta.tables['word']
+ await conn.execute(t.insert(), {'word_id': word_id,
+ 'word_token': word_token,
+ 'type': wtype,
+ 'word': word,
+ 'info': info})
+
+
+def make_phrase(query):
+ return [Phrase(PhraseType.NONE, s) for s in query.split(',')]
+
+@pytest_asyncio.fixture
+async def conn(table_factory):
+ """ Create an asynchronous SQLAlchemy engine for the test DB.
+ """
+ table_factory('nominatim_properties',
+ definition='property TEXT, value TEXT',
+ content=(('tokenizer_import_normalisation', ':: lower();'),
+ ('tokenizer_import_transliteration', "'1' > '/1/'; 'ä' > 'ä '")))
+ table_factory('word',
+ definition='word_id INT, word_token TEXT, type TEXT, word TEXT, info JSONB')
+
+ api = NominatimAPIAsync(Path('/invalid'), {})
+ async with api.begin() as conn:
+ yield conn
+ await api.close()
+
+
+@pytest.mark.asyncio
+async def test_empty_phrase(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ query = await ana.analyze_query([])
+
+ assert len(query.source) == 0
+ assert query.num_token_slots() == 0
+
+
+@pytest.mark.asyncio
+async def test_single_phrase_with_unknown_terms(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'foo', 'w', 'FOO')
+
+ query = await ana.analyze_query(make_phrase('foo BAR'))
+
+ assert len(query.source) == 1
+ assert query.source[0].ptype == PhraseType.NONE
+ assert query.source[0].text == 'foo bar'
+
+ assert query.num_token_slots() == 2
+ assert len(query.nodes[0].starting) == 1
+ assert not query.nodes[1].starting
+
+
+@pytest.mark.asyncio
+async def test_multiple_phrases(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'one', 'w', 'one')
+ await add_word(conn, 2, 'two', 'w', 'two')
+ await add_word(conn, 100, 'one two', 'W', 'one two')
+ await add_word(conn, 3, 'three', 'w', 'three')
+
+ query = await ana.analyze_query(make_phrase('one two,three'))
+
+ assert len(query.source) == 2
+
+
+@pytest.mark.asyncio
+async def test_splitting_in_transliteration(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'mä', 'W', 'ma')
+ await add_word(conn, 2, 'fo', 'W', 'fo')
+
+ query = await ana.analyze_query(make_phrase('mäfo'))
+
+ assert query.num_token_slots() == 2
+ assert query.nodes[0].starting
+ assert query.nodes[1].starting
+ assert query.nodes[1].btype == BreakType.TOKEN
+
+
+@pytest.mark.asyncio
+@pytest.mark.parametrize('term,order', [('23456', ['POSTCODE', 'HOUSENUMBER', 'WORD', 'PARTIAL']),
+ ('3', ['HOUSENUMBER', 'POSTCODE', 'WORD', 'PARTIAL'])
+ ])
+async def test_penalty_postcodes_and_housenumbers(conn, term, order):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, term, 'P', None)
+ await add_word(conn, 2, term, 'H', term)
+ await add_word(conn, 3, term, 'w', term)
+ await add_word(conn, 4, term, 'W', term)
+
+ query = await ana.analyze_query(make_phrase(term))
+
+ assert query.num_token_slots() == 1
+
+ torder = [(tl.tokens[0].penalty, tl.ttype) for tl in query.nodes[0].starting]
+ torder.sort()
+
+ assert [t[1] for t in torder] == [TokenType[o] for o in order]
+
+@pytest.mark.asyncio
+async def test_category_words_only_at_beginning(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'foo', 'S', 'FOO', {'op': 'in'})
+ await add_word(conn, 2, 'bar', 'w', 'BAR')
+
+ query = await ana.analyze_query(make_phrase('foo BAR foo'))
+
+ assert query.num_token_slots() == 3
+ assert len(query.nodes[0].starting) == 1
+ assert query.nodes[0].starting[0].ttype == TokenType.CATEGORY
+ assert not query.nodes[2].starting
+
+
+@pytest.mark.asyncio
+async def test_qualifier_words(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'foo', 'S', None, {'op': '-'})
+ await add_word(conn, 2, 'bar', 'w', None)
+
+ query = await ana.analyze_query(make_phrase('foo BAR foo BAR foo'))
+
+ assert query.num_token_slots() == 5
+ assert set(t.ttype for t in query.nodes[0].starting) == {TokenType.CATEGORY, TokenType.QUALIFIER}
+ assert set(t.ttype for t in query.nodes[2].starting) == {TokenType.QUALIFIER}
+ assert set(t.ttype for t in query.nodes[4].starting) == {TokenType.CATEGORY, TokenType.QUALIFIER}
+
+
+@pytest.mark.asyncio
+async def test_add_unknown_housenumbers(conn):
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, '23', 'H', '23')
+
+ query = await ana.analyze_query(make_phrase('466 23 99834 34a'))
+
+ assert query.num_token_slots() == 4
+ assert query.nodes[0].starting[0].ttype == TokenType.HOUSENUMBER
+ assert len(query.nodes[0].starting[0].tokens) == 1
+ assert query.nodes[0].starting[0].tokens[0].token == 0
+ assert query.nodes[1].starting[0].ttype == TokenType.HOUSENUMBER
+ assert len(query.nodes[1].starting[0].tokens) == 1
+ assert query.nodes[1].starting[0].tokens[0].token == 1
+ assert not query.nodes[2].starting
+ assert not query.nodes[3].starting
+
+
+@pytest.mark.asyncio
+@pytest.mark.parametrize('logtype', ['text', 'html'])
+async def test_log_output(conn, logtype):
+
+ ana = await tok.create_query_analyzer(conn)
+
+ await add_word(conn, 1, 'foo', 'w', 'FOO')
+
+ set_log_output(logtype)
+ await ana.analyze_query(make_phrase('foo'))
+
+ assert get_and_disable()