]> git.openstreetmap.org Git - nominatim.git/commitdiff
add query analyser for legacy tokenizer
authorSarah Hoffmann <lonvia@denofr.de>
Mon, 22 May 2023 09:07:14 +0000 (11:07 +0200)
committerSarah Hoffmann <lonvia@denofr.de>
Mon, 22 May 2023 09:07:14 +0000 (11:07 +0200)
nominatim/api/results.py
nominatim/api/search/legacy_tokenizer.py [new file with mode: 0644]
nominatim/db/sqlalchemy_schema.py
test/python/api/search/test_legacy_query_analyzer.py [new file with mode: 0644]

index 98b13380726e98361bc2571c85bd78928c1afc12..56243e8d7672121c7cf5471f46c19f09aa12a799 100644 (file)
@@ -23,6 +23,7 @@ from nominatim.api.types import Point, Bbox, LookupDetails
 from nominatim.api.connection import SearchConnection
 from nominatim.api.logging import log
 from nominatim.api.localization import Locales
+from nominatim.api.search.query_analyzer_factory import make_query_analyzer
 
 # This file defines complex result data classes.
 # pylint: disable=too-many-instance-attributes
@@ -420,10 +421,12 @@ async def complete_keywords(conn: SearchConnection, result: BaseResult) -> None:
 
     result.name_keywords = []
     result.address_keywords = []
-    for name_tokens, address_tokens in await conn.execute(sql):
-        t = conn.t.word
-        sel = sa.select(t.c.word_id, t.c.word_token, t.c.word)
 
+    await make_query_analyzer(conn)
+    t = conn.t.meta.tables['word']
+    sel = sa.select(t.c.word_id, t.c.word_token, t.c.word)
+
+    for name_tokens, address_tokens in await conn.execute(sql):
         for row in await conn.execute(sel.where(t.c.word_id == sa.any_(name_tokens))):
             result.name_keywords.append(WordInfo(*row))
 
diff --git a/nominatim/api/search/legacy_tokenizer.py b/nominatim/api/search/legacy_tokenizer.py
new file mode 100644 (file)
index 0000000..9697570
--- /dev/null
@@ -0,0 +1,263 @@
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2023 by the Nominatim developer community.
+# For a full list of authors see the git log.
+"""
+Implementation of query analysis for the legacy tokenizer.
+"""
+from typing import Tuple, Dict, List, Optional, Iterator, Any, cast
+from copy import copy
+from collections import defaultdict
+import dataclasses
+
+import sqlalchemy as sa
+
+from nominatim.typing import SaRow
+from nominatim.api.connection import SearchConnection
+from nominatim.api.logging import log
+from nominatim.api.search import query as qmod
+from nominatim.api.search.query_analyzer_factory import AbstractQueryAnalyzer
+
+def yield_words(terms: List[str], start: int) -> Iterator[Tuple[str, qmod.TokenRange]]:
+    """ Return all combinations of words in the terms list after the
+        given position.
+    """
+    total = len(terms)
+    for first in range(start, total):
+        word = terms[first]
+        yield word, qmod.TokenRange(first, first + 1)
+        for last in range(first + 1, min(first + 20, total)):
+            word = ' '.join((word, terms[last]))
+            yield word, qmod.TokenRange(first, last + 1)
+
+
+@dataclasses.dataclass
+class LegacyToken(qmod.Token):
+    """ Specialised token for legacy tokenizer.
+    """
+    word_token: str
+    category: Optional[Tuple[str, str]]
+    country: Optional[str]
+    operator: Optional[str]
+
+    @property
+    def info(self) -> Dict[str, Any]:
+        """ Dictionary of additional propoerties of the token.
+            Should only be used for debugging purposes.
+        """
+        return {'category': self.category,
+                'country': self.country,
+                'operator': self.operator}
+
+
+    def get_category(self) -> Tuple[str, str]:
+        assert self.category
+        return self.category
+
+
+class LegacyQueryAnalyzer(AbstractQueryAnalyzer):
+    """ Converter for query strings into a tokenized query
+        using the tokens created by a legacy tokenizer.
+    """
+
+    def __init__(self, conn: SearchConnection) -> None:
+        self.conn = conn
+
+    async def setup(self) -> None:
+        """ Set up static data structures needed for the analysis.
+        """
+        self.max_word_freq = int(await self.conn.get_property('tokenizer_maxwordfreq'))
+        if 'word' not in self.conn.t.meta.tables:
+            sa.Table('word', self.conn.t.meta,
+                     sa.Column('word_id', sa.Integer),
+                     sa.Column('word_token', sa.Text, nullable=False),
+                     sa.Column('word', sa.Text),
+                     sa.Column('class', sa.Text),
+                     sa.Column('type', sa.Text),
+                     sa.Column('country_code', sa.Text),
+                     sa.Column('search_name_count', sa.Integer),
+                     sa.Column('operator', sa.Text))
+
+
+    async def analyze_query(self, phrases: List[qmod.Phrase]) -> qmod.QueryStruct:
+        """ Analyze the given list of phrases and return the
+            tokenized query.
+        """
+        log().section('Analyze query (using Legacy tokenizer)')
+
+        normalized = []
+        if phrases:
+            for row in await self.conn.execute(sa.select(*(sa.func.make_standard_name(p.text)
+                                                           for p in phrases))):
+                normalized = [qmod.Phrase(p.ptype, r) for r, p in zip(row, phrases) if r]
+                break
+
+        query = qmod.QueryStruct(normalized)
+        log().var_dump('Normalized query', query.source)
+        if not query.source:
+            return query
+
+        parts, words = self.split_query(query)
+        lookup_words = list(words.keys())
+        log().var_dump('Split query', parts)
+        log().var_dump('Extracted words', lookup_words)
+
+        for row in await self.lookup_in_db(lookup_words):
+            for trange in words[row.word_token.strip()]:
+                token, ttype = self.make_token(row)
+                if ttype == qmod.TokenType.CATEGORY:
+                    if trange.start == 0:
+                        query.add_token(trange, qmod.TokenType.CATEGORY, token)
+                elif ttype == qmod.TokenType.QUALIFIER:
+                    query.add_token(trange, qmod.TokenType.QUALIFIER, token)
+                    if trange.start == 0 or trange.end == query.num_token_slots():
+                        token = copy(token)
+                        token.penalty += 0.1 * (query.num_token_slots())
+                        query.add_token(trange, qmod.TokenType.CATEGORY, token)
+                elif ttype != qmod.TokenType.PARTIAL or trange.start + 1 == trange.end:
+                    query.add_token(trange, ttype, token)
+
+        self.add_extra_tokens(query, parts)
+        self.rerank_tokens(query)
+
+        log().table_dump('Word tokens', _dump_word_tokens(query))
+
+        return query
+
+
+    def split_query(self, query: qmod.QueryStruct) -> Tuple[List[str],
+                                                            Dict[str, List[qmod.TokenRange]]]:
+        """ Transliterate the phrases and split them into tokens.
+
+            Returns a list of transliterated tokens and a dictionary
+            of words for lookup together with their position.
+        """
+        parts: List[str] = []
+        phrase_start = 0
+        words = defaultdict(list)
+        for phrase in query.source:
+            query.nodes[-1].ptype = phrase.ptype
+            for trans in phrase.text.split(' '):
+                if trans:
+                    for term in trans.split(' '):
+                        if term:
+                            parts.append(trans)
+                            query.add_node(qmod.BreakType.TOKEN, phrase.ptype)
+                    query.nodes[-1].btype = qmod.BreakType.WORD
+            query.nodes[-1].btype = qmod.BreakType.PHRASE
+            for word, wrange in yield_words(parts, phrase_start):
+                words[word].append(wrange)
+            phrase_start = len(parts)
+        query.nodes[-1].btype = qmod.BreakType.END
+
+        return parts, words
+
+
+    async def lookup_in_db(self, words: List[str]) -> 'sa.Result[Any]':
+        """ Return the token information from the database for the
+            given word tokens.
+        """
+        t = self.conn.t.meta.tables['word']
+
+        sql = t.select().where(t.c.word_token.in_(words + [' ' + w for w in words]))
+
+        return await self.conn.execute(sql)
+
+
+    def make_token(self, row: SaRow) -> Tuple[LegacyToken, qmod.TokenType]:
+        """ Create a LegacyToken from the row of the word table.
+            Also determines the type of token.
+        """
+        penalty = 0.0
+        is_indexed = True
+
+        rowclass = getattr(row, 'class')
+
+        if row.country_code is not None:
+            ttype = qmod.TokenType.COUNTRY
+            lookup_word = row.country_code
+        elif rowclass is not None:
+            if rowclass == 'place' and  row.type == 'house':
+                ttype = qmod.TokenType.HOUSENUMBER
+                lookup_word = row.word_token[1:]
+            elif rowclass == 'place' and  row.type == 'postcode':
+                ttype = qmod.TokenType.POSTCODE
+                lookup_word = row.word_token[1:]
+            else:
+                ttype = qmod.TokenType.CATEGORY if row.operator in ('in', 'near')\
+                        else qmod.TokenType.QUALIFIER
+                lookup_word = row.word
+        elif row.word_token.startswith(' '):
+            ttype = qmod.TokenType.WORD
+            lookup_word = row.word or row.word_token[1:]
+        else:
+            ttype = qmod.TokenType.PARTIAL
+            lookup_word = row.word_token
+            penalty = 0.21
+            if row.search_name_count > self.max_word_freq:
+                is_indexed = False
+
+        return LegacyToken(penalty=penalty, token=row.word_id,
+                           count=row.search_name_count or 1,
+                           lookup_word=lookup_word,
+                           word_token=row.word_token.strip(),
+                           category=(rowclass, row.type) if rowclass is not None else None,
+                           country=row.country_code,
+                           operator=row.operator,
+                           is_indexed=is_indexed),\
+               ttype
+
+
+    def add_extra_tokens(self, query: qmod.QueryStruct, parts: List[str]) -> None:
+        """ Add tokens to query that are not saved in the database.
+        """
+        for part, node, i in zip(parts, query.nodes, range(1000)):
+            if len(part) <= 4 and part.isdigit()\
+               and not node.has_tokens(i+1, qmod.TokenType.HOUSENUMBER):
+                query.add_token(qmod.TokenRange(i, i+1), qmod.TokenType.HOUSENUMBER,
+                                LegacyToken(penalty=0.5, token=0, count=1,
+                                            lookup_word=part, word_token=part,
+                                            category=None, country=None,
+                                            operator=None, is_indexed=True))
+
+
+    def rerank_tokens(self, query: qmod.QueryStruct) -> None:
+        """ Add penalties to tokens that depend on presence of other token.
+        """
+        for _, node, tlist in query.iter_token_lists():
+            if tlist.ttype == qmod.TokenType.POSTCODE:
+                for repl in node.starting:
+                    if repl.end == tlist.end and repl.ttype != qmod.TokenType.POSTCODE \
+                       and (repl.ttype != qmod.TokenType.HOUSENUMBER
+                            or len(tlist.tokens[0].lookup_word) > 4):
+                        repl.add_penalty(0.39)
+            elif tlist.ttype == qmod.TokenType.HOUSENUMBER:
+                if any(c.isdigit() for c in tlist.tokens[0].lookup_word):
+                    for repl in node.starting:
+                        if repl.end == tlist.end and repl.ttype != qmod.TokenType.HOUSENUMBER \
+                           and (repl.ttype != qmod.TokenType.HOUSENUMBER
+                                or len(tlist.tokens[0].lookup_word) <= 3):
+                            repl.add_penalty(0.5 - tlist.tokens[0].penalty)
+
+
+
+def _dump_word_tokens(query: qmod.QueryStruct) -> Iterator[List[Any]]:
+    yield ['type', 'token', 'word_token', 'lookup_word', 'penalty', 'count', 'info']
+    for node in query.nodes:
+        for tlist in node.starting:
+            for token in tlist.tokens:
+                t = cast(LegacyToken, token)
+                yield [tlist.ttype.name, t.token, t.word_token or '',
+                       t.lookup_word or '', t.penalty, t.count, t.info]
+
+
+async def create_query_analyzer(conn: SearchConnection) -> AbstractQueryAnalyzer:
+    """ Create and set up a new query analyzer for a database based
+        on the ICU tokenizer.
+    """
+    out = LegacyQueryAnalyzer(conn)
+    await out.setup()
+
+    return out
index 26bbefcf49e7fe6e9f59316c39f2a8026418f4ad..550f1f12af6be778b941f6bc7557af73530fa56f 100644 (file)
@@ -113,13 +113,6 @@ class SearchTables:
             sa.Column('postcode', sa.Text),
             sa.Column('country_code', sa.String(2)))
 
-        self.word = sa.Table('word', meta,
-            sa.Column('word_id', sa.Integer),
-            sa.Column('word_token', sa.Text, nullable=False),
-            sa.Column('type', sa.Text, nullable=False),
-            sa.Column('word', sa.Text),
-            sa.Column('info', self.types.Json))
-
         self.country_name = sa.Table('country_name', meta,
             sa.Column('country_code', sa.String(2)),
             sa.Column('name', self.types.Composite),
diff --git a/test/python/api/search/test_legacy_query_analyzer.py b/test/python/api/search/test_legacy_query_analyzer.py
new file mode 100644 (file)
index 0000000..c211585
--- /dev/null
@@ -0,0 +1,245 @@
+# SPDX-License-Identifier: GPL-3.0-or-later
+#
+# This file is part of Nominatim. (https://nominatim.org)
+#
+# Copyright (C) 2023 by the Nominatim developer community.
+# For a full list of authors see the git log.
+"""
+Tests for query analyzer for legacy tokenizer.
+"""
+from pathlib import Path
+
+import pytest
+import pytest_asyncio
+
+from nominatim.api import NominatimAPIAsync
+from nominatim.api.search.query import Phrase, PhraseType, TokenType, BreakType
+import nominatim.api.search.legacy_tokenizer as tok
+from nominatim.api.logging import set_log_output, get_and_disable
+
+
+async def add_word(conn, word_id, word_token, word, count):
+    t = conn.t.meta.tables['word']
+    await conn.execute(t.insert(), {'word_id': word_id,
+                                    'word_token': word_token,
+                                    'search_name_count': count,
+                                    'word': word})
+
+
+async def add_housenumber(conn, word_id, hnr):
+    t = conn.t.meta.tables['word']
+    await conn.execute(t.insert(), {'word_id': word_id,
+                                    'word_token': ' ' + hnr,
+                                    'word': hnr,
+                                    'class': 'place',
+                                    'type': 'house'})
+
+
+async def add_postcode(conn, word_id, postcode):
+    t = conn.t.meta.tables['word']
+    await conn.execute(t.insert(), {'word_id': word_id,
+                                    'word_token': ' ' + postcode,
+                                    'word': postcode,
+                                    'class': 'place',
+                                    'type': 'postcode'})
+
+
+async def add_special_term(conn, word_id, word_token, cls, typ, op):
+    t = conn.t.meta.tables['word']
+    await conn.execute(t.insert(), {'word_id': word_id,
+                                    'word_token': word_token,
+                                    'word': word_token,
+                                    'class': cls,
+                                    'type': typ,
+                                    'operator': op})
+
+
+def make_phrase(query):
+    return [Phrase(PhraseType.NONE, s) for s in query.split(',')]
+
+
+@pytest_asyncio.fixture
+async def conn(table_factory, temp_db_cursor):
+    """ Create an asynchronous SQLAlchemy engine for the test DB.
+    """
+    table_factory('nominatim_properties',
+                  definition='property TEXT, value TEXT',
+                  content=(('tokenizer_maxwordfreq', '10000'), ))
+    table_factory('word',
+                  definition="""word_id INT, word_token TEXT, word TEXT,
+                                class TEXT, type TEXT, country_code TEXT,
+                                search_name_count INT, operator TEXT
+                             """)
+
+    temp_db_cursor.execute("""CREATE OR REPLACE FUNCTION make_standard_name(name TEXT)
+                              RETURNS TEXT AS $$ SELECT lower(name); $$ LANGUAGE SQL;""")
+
+    api = NominatimAPIAsync(Path('/invalid'), {})
+    async with api.begin() as conn:
+        yield conn
+    await api.close()
+
+
+@pytest.mark.asyncio
+async def test_empty_phrase(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    query = await ana.analyze_query([])
+
+    assert len(query.source) == 0
+    assert query.num_token_slots() == 0
+
+
+@pytest.mark.asyncio
+async def test_single_phrase_with_unknown_terms(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_word(conn, 1, 'foo', 'FOO', 3)
+
+    query = await ana.analyze_query(make_phrase('foo BAR'))
+
+    assert len(query.source) == 1
+    assert query.source[0].ptype == PhraseType.NONE
+    assert query.source[0].text == 'foo bar'
+
+    assert query.num_token_slots() == 2
+    assert len(query.nodes[0].starting) == 1
+    assert not query.nodes[1].starting
+
+
+@pytest.mark.asyncio
+async def test_multiple_phrases(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_word(conn, 1, 'one', 'one', 13)
+    await add_word(conn, 2, 'two', 'two', 45)
+    await add_word(conn, 100, 'one two', 'one two', 3)
+    await add_word(conn, 3, 'three', 'three', 4584)
+
+    query = await ana.analyze_query(make_phrase('one two,three'))
+
+    assert len(query.source) == 2
+
+
+@pytest.mark.asyncio
+async def test_housenumber_token(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_housenumber(conn, 556, '45 a')
+
+    query = await ana.analyze_query(make_phrase('45 A'))
+
+    assert query.num_token_slots() == 2
+    assert len(query.nodes[0].starting) == 2
+
+    query.nodes[0].starting.sort(key=lambda tl: tl.end)
+
+    hn1 = query.nodes[0].starting[0]
+    assert hn1.ttype == TokenType.HOUSENUMBER
+    assert hn1.end == 1
+    assert hn1.tokens[0].token == 0
+
+    hn2 = query.nodes[0].starting[1]
+    assert hn2.ttype == TokenType.HOUSENUMBER
+    assert hn2.end == 2
+    assert hn2.tokens[0].token == 556
+
+
+@pytest.mark.asyncio
+async def test_postcode_token(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_postcode(conn, 34, '45ax')
+
+    query = await ana.analyze_query(make_phrase('45AX'))
+
+    assert query.num_token_slots() == 1
+    assert [tl.ttype for tl in query.nodes[0].starting] == [TokenType.POSTCODE]
+
+
+@pytest.mark.asyncio
+async def test_partial_tokens(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_word(conn, 1, ' foo', 'foo', 99)
+    await add_word(conn, 1, 'foo', 'FOO', 99)
+    await add_word(conn, 1, 'bar', 'FOO', 990000)
+
+    query = await ana.analyze_query(make_phrase('foo bar'))
+
+    assert query.num_token_slots() == 2
+
+    first = query.nodes[0].starting
+    first.sort(key=lambda tl: tl.tokens[0].penalty)
+    assert [tl.ttype for tl in first] == [TokenType.WORD, TokenType.PARTIAL]
+    assert all(tl.tokens[0].lookup_word == 'foo' for tl in first)
+
+    second = query.nodes[1].starting
+    assert [tl.ttype for tl in second] == [TokenType.PARTIAL]
+    assert not second[0].tokens[0].is_indexed
+
+
+@pytest.mark.asyncio
+@pytest.mark.parametrize('term,order', [('23456', ['POSTCODE', 'HOUSENUMBER', 'WORD', 'PARTIAL']),
+                                        ('3', ['HOUSENUMBER', 'POSTCODE', 'WORD', 'PARTIAL'])
+                                       ])
+async def test_penalty_postcodes_and_housenumbers(conn, term, order):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_postcode(conn, 1, term)
+    await add_housenumber(conn, 2, term)
+    await add_word(conn, 3, term, term, 5)
+    await add_word(conn, 4, ' ' + term, term, 1)
+
+    query = await ana.analyze_query(make_phrase(term))
+
+    assert query.num_token_slots() == 1
+
+    torder = [(tl.tokens[0].penalty, tl.ttype) for tl in query.nodes[0].starting]
+    print(query.nodes[0].starting)
+    torder.sort()
+
+    assert [t[1] for t in torder] == [TokenType[o] for o in order]
+
+
+@pytest.mark.asyncio
+async def test_category_words_only_at_beginning(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_special_term(conn, 1, 'foo', 'amenity', 'restaurant', 'in')
+    await add_word(conn, 2, ' bar', 'BAR', 1)
+
+    query = await ana.analyze_query(make_phrase('foo BAR foo'))
+
+    assert query.num_token_slots() == 3
+    assert len(query.nodes[0].starting) == 1
+    assert query.nodes[0].starting[0].ttype == TokenType.CATEGORY
+    assert not query.nodes[2].starting
+
+
+@pytest.mark.asyncio
+async def test_qualifier_words(conn):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_special_term(conn, 1, 'foo', 'amenity', 'restaurant', '-')
+    await add_word(conn, 2, ' bar', 'w', None)
+
+    query = await ana.analyze_query(make_phrase('foo BAR foo BAR foo'))
+
+    assert query.num_token_slots() == 5
+    assert set(t.ttype for t in query.nodes[0].starting) == {TokenType.CATEGORY, TokenType.QUALIFIER}
+    assert set(t.ttype for t in query.nodes[2].starting) == {TokenType.QUALIFIER}
+    assert set(t.ttype for t in query.nodes[4].starting) == {TokenType.CATEGORY, TokenType.QUALIFIER}
+
+
+@pytest.mark.asyncio
+@pytest.mark.parametrize('logtype', ['text', 'html'])
+async def test_log_output(conn, logtype):
+    ana = await tok.create_query_analyzer(conn)
+
+    await add_word(conn, 1, 'foo', 'FOO', 99)
+
+    set_log_output(logtype)
+    await ana.analyze_query(make_phrase('foo'))
+
+    assert get_and_disable()