class _PoiData(dbf.SearchData):
penalty = 0.0
qualifiers = dbf.WeightedCategories(category, [0.0] * len(category))
- countries=ccs
+ countries = ccs
return dbs.PoiSearch(_PoiData())
self.query = query
self.details = details
-
@property
def configured_for_country(self) -> bool:
""" Return true if the search details are configured to
allow countries in the result.
"""
return self.details.min_rank <= 4 and self.details.max_rank >= 4 \
- and self.details.layer_enabled(DataLayer.ADDRESS)
-
+ and self.details.layer_enabled(DataLayer.ADDRESS)
@property
def configured_for_postcode(self) -> bool:
allow postcodes in the result.
"""
return self.details.min_rank <= 5 and self.details.max_rank >= 11\
- and self.details.layer_enabled(DataLayer.ADDRESS)
-
+ and self.details.layer_enabled(DataLayer.ADDRESS)
@property
def configured_for_housenumbers(self) -> bool:
allow addresses in the result.
"""
return self.details.max_rank >= 30 \
- and self.details.layer_enabled(DataLayer.ADDRESS)
-
+ and self.details.layer_enabled(DataLayer.ADDRESS)
def build(self, assignment: TokenAssignment) -> Iterator[dbs.AbstractSearch]:
""" Yield all possible abstract searches for the given token assignment.
near_items = self.get_near_items(assignment)
if near_items is not None and not near_items:
- return # impossible compbination of near items and category parameter
+ return # impossible combination of near items and category parameter
if assignment.name is None:
if near_items and not sdata.postcodes:
search.penalty += assignment.penalty
yield search
-
def build_poi_search(self, sdata: dbf.SearchData) -> Iterator[dbs.AbstractSearch]:
""" Build abstract search query for a simple category search.
This kind of search requires an additional geographic constraint.
and ((self.details.viewbox and self.details.bounded_viewbox) or self.details.near):
yield dbs.PoiSearch(sdata)
-
def build_special_search(self, sdata: dbf.SearchData,
address: List[TokenRange],
is_category: bool) -> Iterator[dbs.AbstractSearch]:
penalty += 0.2
yield dbs.PostcodeSearch(penalty, sdata)
-
def build_housenumber_search(self, sdata: dbf.SearchData, hnrs: List[Token],
address: List[TokenRange]) -> Iterator[dbs.AbstractSearch]:
""" Build a simple address search for special entries where the
expected_count = sum(t.count for t in hnrs)
partials = {t.token: t.addr_count for trange in address
- for t in self.query.get_partials_list(trange)}
+ for t in self.query.get_partials_list(trange)}
if not partials:
# can happen when none of the partials is indexed
sdata.housenumbers = dbf.WeightedStrings([], [])
yield dbs.PlaceSearch(0.05, sdata, expected_count)
-
def build_name_search(self, sdata: dbf.SearchData,
name: TokenRange, address: List[TokenRange],
is_category: bool) -> Iterator[dbs.AbstractSearch]:
sdata.lookups = lookup
yield dbs.PlaceSearch(penalty + name_penalty, sdata, count)
-
- def yield_lookups(self, name: TokenRange, address: List[TokenRange])\
- -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
+ def yield_lookups(self, name: TokenRange, address: List[TokenRange]
+ ) -> Iterator[Tuple[float, int, List[dbf.FieldLookup]]]:
""" Yield all variants how the given name and address should best
be searched for. This takes into account how frequent the terms
are and tries to find a lookup that optimizes index use.
"""
- penalty = 0.0 # extra penalty
+ penalty = 0.0 # extra penalty
name_partials = {t.token: t for t in self.query.get_partials_list(name)}
addr_partials = [t for r in address for t in self.query.get_partials_list(r)]
yield penalty, exp_count, dbf.lookup_by_names(list(name_partials.keys()), addr_tokens)
return
- addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 30000
+ addr_count = min(t.addr_count for t in addr_partials) if addr_partials else 50000
# Partial term to frequent. Try looking up by rare full names first.
name_fulls = self.query.get_tokens(name, TokenType.WORD)
if name_fulls:
fulls_count = sum(t.count for t in name_fulls)
- if fulls_count < 50000 or addr_count < 30000:
+ if fulls_count < 80000 or addr_count < 50000:
- yield penalty,fulls_count / (2**len(addr_tokens)), \
+ yield penalty, fulls_count / (2**len(addr_tokens)), \
self.get_full_name_ranking(name_fulls, addr_partials,
fulls_count > 30000 / max(1, len(addr_tokens)))
if exp_count < 10000 and addr_count < 20000:
penalty += 0.35 * max(1 if name_fulls else 0.1,
5 - len(name_partials) - len(addr_tokens))
- yield penalty, exp_count,\
- self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
-
+ yield penalty, exp_count, \
+ self.get_name_address_ranking(list(name_partials.keys()), addr_partials)
def get_name_address_ranking(self, name_tokens: List[int],
addr_partials: List[Token]) -> List[dbf.FieldLookup]:
return lookup
-
def get_full_name_ranking(self, name_fulls: List[Token], addr_partials: List[Token],
use_lookup: bool) -> List[dbf.FieldLookup]:
""" Create a ranking expression with full name terms and
# This might yield wrong results, nothing we can do about that.
if use_lookup:
addr_restrict_tokens = []
- addr_lookup_tokens = []
- for t in addr_partials:
- if t.addr_count > 20000:
- addr_restrict_tokens.append(t.token)
- else:
- addr_lookup_tokens.append(t.token)
+ addr_lookup_tokens = [t.token for t in addr_partials]
else:
addr_restrict_tokens = [t.token for t in addr_partials]
addr_lookup_tokens = []
return dbf.lookup_by_any_name([t.token for t in name_fulls],
addr_restrict_tokens, addr_lookup_tokens)
-
def get_name_ranking(self, trange: TokenRange,
db_field: str = 'name_vector') -> dbf.FieldRanking:
""" Create a ranking expression for a name term in the given range.
default = sum(t.penalty for t in name_partials) + 0.2
return dbf.FieldRanking(db_field, default, ranks)
-
def get_addr_ranking(self, trange: TokenRange) -> dbf.FieldRanking:
""" Create a list of ranking expressions for an address term
for the given ranges.
heapq.heappush(todo, (0, trange.start, dbf.RankedTokens(0.0, [])))
ranks: List[dbf.RankedTokens] = []
- while todo: # pylint: disable=too-many-nested-blocks
+ while todo:
neglen, pos, rank = heapq.heappop(todo)
for tlist in self.query.nodes[pos].starting:
if tlist.ttype in (TokenType.PARTIAL, TokenType.WORD):
return dbf.FieldRanking('nameaddress_vector', default, ranks)
-
def get_search_data(self, assignment: TokenAssignment) -> Optional[dbf.SearchData]:
""" Collect the tokens for the non-name search fields in the
assignment.
return sdata
-
def get_country_tokens(self, trange: TokenRange) -> List[Token]:
""" Return the list of country tokens for the given range,
optionally filtered by the country list from the details
return tokens
-
def get_qualifier_tokens(self, trange: TokenRange) -> List[Token]:
""" Return the list of qualifier tokens for the given range,
optionally filtered by the qualifier list from the details
return tokens
-
def get_near_items(self, assignment: TokenAssignment) -> Optional[dbf.WeightedCategories]:
""" Collect tokens for near items search or use the categories
requested per parameter.
QueryParts = List[QueryPart]
WordDict = Dict[str, List[qmod.TokenRange]]
+
def yield_words(terms: List[QueryPart], start: int) -> Iterator[Tuple[str, qmod.TokenRange]]:
""" Return all combinations of words in the terms list after the
given position.
assert self.info
return self.info.get('class', ''), self.info.get('type', '')
-
def rematch(self, norm: str) -> None:
""" Check how well the token matches the given normalized string
and add a penalty, if necessary.
distance += abs((ato-afrom) - (bto-bfrom))
self.penalty += (distance/len(self.lookup_word))
-
@staticmethod
def from_db_row(row: SaRow) -> 'ICUToken':
""" Create a ICUToken from the row of the word table.
addr_count=max(1, addr_count))
-
class ICUQueryAnalyzer(AbstractQueryAnalyzer):
""" Converter for query strings into a tokenized query
using the tokens created by a ICU tokenizer.
"""
-
def __init__(self, conn: SearchConnection) -> None:
self.conn = conn
-
async def setup(self) -> None:
""" Set up static data structures needed for the analysis.
"""
sa.Column('word', sa.Text),
sa.Column('info', Json))
-
async def analyze_query(self, phrases: List[qmod.Phrase]) -> qmod.QueryStruct:
""" Analyze the given list of phrases and return the
tokenized query.
return query
-
def normalize_text(self, text: str) -> str:
""" Bring the given text into a normalized form. That is the
standardized form search will work with. All information removed
at this stage is inevitably lost.
"""
- return cast(str, self.normalizer.transliterate(text))
+ norm = cast(str, self.normalizer.transliterate(text))
+ numspaces = norm.count(' ')
+ if numspaces > 4 and len(norm) <= (numspaces + 1) * 3:
+ return ''
+
+ return norm
-
def split_query(self, query: qmod.QueryStruct) -> Tuple[QueryParts, WordDict]:
""" Transliterate the phrases and split them into tokens.
return parts, words
-
async def lookup_in_db(self, words: List[str]) -> 'sa.Result[Any]':
""" Return the token information from the database for the
given word tokens.
t = self.conn.t.meta.tables['word']
return await self.conn.execute(t.select().where(t.c.word_token.in_(words)))
-
def add_extra_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
""" Add tokens to query that are not saved in the database.
"""
count=1, addr_count=1, lookup_word=part.token,
word_token=part.token, info=None))
-
def rerank_tokens(self, query: qmod.QueryStruct, parts: QueryParts) -> None:
""" Add penalties to tokens that depend on presence of other token.
"""
and (repl.ttype != qmod.TokenType.HOUSENUMBER
or len(tlist.tokens[0].lookup_word) > 4):
repl.add_penalty(0.39)
- elif tlist.ttype == qmod.TokenType.HOUSENUMBER \
- and len(tlist.tokens[0].lookup_word) <= 3:
+ elif (tlist.ttype == qmod.TokenType.HOUSENUMBER
+ and len(tlist.tokens[0].lookup_word) <= 3):
if any(c.isdigit() for c in tlist.tokens[0].lookup_word):
for repl in node.starting:
if repl.end == tlist.end and repl.ttype != qmod.TokenType.HOUSENUMBER:
from psycopg.types.json import Jsonb
from psycopg import sql as pysql
- from ..db.connection import connect, Connection, Cursor, server_version_tuple,\
+ from ..db.connection import connect, Connection, Cursor, server_version_tuple, \
drop_tables, table_exists, execute_scalar
from ..config import Configuration
from ..db.sql_preprocessor import SQLPreprocessor
LOG = logging.getLogger()
- WORD_TYPES =(('country_names', 'C'),
- ('postcodes', 'P'),
- ('full_word', 'W'),
- ('housenumbers', 'H'))
+ WORD_TYPES = (('country_names', 'C'),
+ ('postcodes', 'P'),
+ ('full_word', 'W'),
+ ('housenumbers', 'H'))
+
def create(dsn: str, data_dir: Path) -> 'ICUTokenizer':
""" Create a new instance of the tokenizer provided by this module.
self.data_dir = data_dir
self.loader: Optional[ICURuleLoader] = None
-
def init_new_db(self, config: Configuration, init_db: bool = True) -> None:
""" Set up a new tokenizer for the database.
self._setup_db_tables(config)
self._create_base_indices(config, 'word')
-
def init_from_project(self, config: Configuration) -> None:
""" Initialise the tokenizer from the project directory.
"""
with connect(self.dsn) as conn:
self.loader.load_config_from_db(conn)
-
def finalize_import(self, config: Configuration) -> None:
""" Do any required postprocessing to make the tokenizer data ready
for use.
"""
self._create_lookup_indices(config, 'word')
-
def update_sql_functions(self, config: Configuration) -> None:
""" Reimport the SQL functions for this tokenizer.
"""
sqlp = SQLPreprocessor(conn, config)
sqlp.run_sql_file(conn, 'tokenizer/icu_tokenizer.sql')
-
def check_database(self, config: Configuration) -> None:
""" Check that the tokenizer is set up correctly.
"""
# Will throw an error if there is an issue.
self.init_from_project(config)
-
def update_statistics(self, config: Configuration, threads: int = 2) -> None:
""" Recompute frequencies for all name words.
"""
SELECT unnest(nameaddress_vector) as id, count(*)
FROM search_name GROUP BY id""")
cur.execute('CREATE INDEX ON addressword_frequencies(id)')
- cur.execute("""CREATE OR REPLACE FUNCTION word_freq_update(wid INTEGER,
- INOUT info JSONB)
- AS $$
- DECLARE rec RECORD;
- BEGIN
- IF info is null THEN
- info = '{}'::jsonb;
- END IF;
- FOR rec IN SELECT count FROM word_frequencies WHERE id = wid
- LOOP
- info = info || jsonb_build_object('count', rec.count);
- END LOOP;
- FOR rec IN SELECT count FROM addressword_frequencies WHERE id = wid
- LOOP
- info = info || jsonb_build_object('addr_count', rec.count);
- END LOOP;
- IF info = '{}'::jsonb THEN
- info = null;
- END IF;
- END;
- $$ LANGUAGE plpgsql IMMUTABLE;
- """)
+ cur.execute("""
+ CREATE OR REPLACE FUNCTION word_freq_update(wid INTEGER,
+ INOUT info JSONB)
+ AS $$
+ DECLARE rec RECORD;
+ BEGIN
+ IF info is null THEN
+ info = '{}'::jsonb;
+ END IF;
+ FOR rec IN SELECT count FROM word_frequencies WHERE id = wid
+ LOOP
+ info = info || jsonb_build_object('count', rec.count);
+ END LOOP;
+ FOR rec IN SELECT count FROM addressword_frequencies WHERE id = wid
+ LOOP
+ info = info || jsonb_build_object('addr_count', rec.count);
+ END LOOP;
+ IF info = '{}'::jsonb THEN
+ info = null;
+ END IF;
+ END;
+ $$ LANGUAGE plpgsql IMMUTABLE;
+ """)
LOG.info('Update word table with recomputed frequencies')
drop_tables(conn, 'tmp_word')
cur.execute("""CREATE TABLE tmp_word AS
END) as info
FROM word LEFT JOIN word_frequencies wf
ON word.word_id = wf.id
+ ORDER BY word_id
""")
drop_tables(conn, 'word_frequencies')
self._create_lookup_indices(config, 'tmp_word')
self._move_temporary_word_table('tmp_word')
-
-
def _cleanup_housenumbers(self) -> None:
""" Remove unused house numbers.
"""
(list(candidates.values()), ))
conn.commit()
-
-
def update_word_tokens(self) -> None:
""" Remove unused tokens.
"""
self._cleanup_housenumbers()
LOG.warning("Tokenizer house-keeping done.")
-
def name_analyzer(self) -> 'ICUNameAnalyzer':
""" Create a new analyzer for tokenizing names and queries
using this tokinzer. Analyzers are context managers and should
return ICUNameAnalyzer(self.dsn, self.loader.make_sanitizer(),
self.loader.make_token_analysis())
-
def most_frequent_words(self, conn: Connection, num: int) -> List[str]:
""" Return a list of the `num` most frequent full words
in the database.
ORDER BY count DESC LIMIT %s""", (num,))
return list(s[0].split('@')[0] for s in cur)
-
def _save_config(self) -> None:
""" Save the configuration that needs to remain stable for the given
database as database properties.
with connect(self.dsn) as conn:
self.loader.save_config_to_db(conn)
-
def _setup_db_tables(self, config: Configuration) -> None:
""" Set up the word table and fill it with pre-computed word
frequencies.
""")
conn.commit()
-
def _create_base_indices(self, config: Configuration, table_name: str) -> None:
""" Set up the word table and fill it with pre-computed word
frequencies.
column_type=ctype)
conn.commit()
-
def _create_lookup_indices(self, config: Configuration, table_name: str) -> None:
""" Create additional indexes used when running the API.
"""
with connect(self.dsn) as conn:
sqlp = SQLPreprocessor(conn, config)
# Index required for details lookup.
- sqlp.run_string(conn, """
+ sqlp.run_string(
+ conn,
+ """
CREATE INDEX IF NOT EXISTS idx_{{table_name}}_word_id
ON {{table_name}} USING BTREE (word_id) {{db.tablespace.search_index}}
- """,
- table_name=table_name)
+ """,
+ table_name=table_name)
conn.commit()
-
def _move_temporary_word_table(self, old: str) -> None:
""" Rename all tables and indexes used by the tokenizer.
"""
conn.commit()
-
-
class ICUNameAnalyzer(AbstractAnalyzer):
""" The ICU analyzer uses the ICU library for splitting names.
self._cache = _TokenCache()
-
def close(self) -> None:
""" Free all resources used by the analyzer.
"""
self.conn.close()
self.conn = None
-
def _search_normalized(self, name: str) -> str:
""" Return the search token transliteration of the given name.
"""
return cast(str, self.token_analysis.search.transliterate(name)).strip()
-
def _normalized(self, name: str) -> str:
""" Return the normalized version of the given name with all
non-relevant information removed.
"""
return cast(str, self.token_analysis.normalizer.transliterate(name)).strip()
-
def get_word_token_info(self, words: Sequence[str]) -> List[Tuple[str, str, int]]:
""" Return token information for the given list of words.
If a word starts with # it is assumed to be a full name
part_ids = {r[0]: r[1] for r in cur}
return [(k, v, full_ids.get(v, None)) for k, v in full_tokens.items()] \
- + [(k, v, part_ids.get(v, None)) for k, v in partial_tokens.items()]
-
+ + [(k, v, part_ids.get(v, None)) for k, v in partial_tokens.items()]
def normalize_postcode(self, postcode: str) -> str:
""" Convert the postcode to a standardized form.
"""
return postcode.strip().upper()
-
def update_postcodes_from_db(self) -> None:
""" Update postcode tokens in the word table from the location_postcode
table.
with self.conn.cursor() as cur:
cur.executemany("""SELECT create_postcode_word(%s, %s)""", terms)
-
-
-
def update_special_phrases(self, phrases: Iterable[Tuple[str, str, str, str]],
should_replace: bool) -> None:
""" Replace the search index for special phrases with the new phrases.
LOG.info("Total phrases: %s. Added: %s. Deleted: %s",
len(norm_phrases), added, deleted)
-
def _add_special_phrases(self, cursor: Cursor,
new_phrases: Set[Tuple[str, str, str, str]],
existing_phrases: Set[Tuple[str, str, str, str]]) -> int:
return added
-
def _remove_special_phrases(self, cursor: Cursor,
- new_phrases: Set[Tuple[str, str, str, str]],
- existing_phrases: Set[Tuple[str, str, str, str]]) -> int:
+ new_phrases: Set[Tuple[str, str, str, str]],
+ existing_phrases: Set[Tuple[str, str, str, str]]) -> int:
""" Remove all phrases from the database that are no longer in the
new phrase list.
"""
return len(to_delete)
-
def add_country_names(self, country_code: str, names: Mapping[str, str]) -> None:
""" Add default names for the given country to the search index.
"""
self.sanitizer.process_names(info)[0],
internal=True)
-
def _add_country_full_names(self, country_code: str, names: Sequence[PlaceName],
internal: bool = False) -> None:
""" Add names for the given country from an already sanitized
"""
cur.execute(sql, (country_code, list(new_tokens)))
-
def process_place(self, place: PlaceInfo) -> Mapping[str, Any]:
""" Determine tokenizer information about the given place.
return token_info.to_dict()
-
def _process_place_address(self, token_info: '_TokenInfo',
address: Sequence[PlaceName]) -> None:
for item in address:
elif item.kind == 'place':
if not item.suffix:
token_info.add_place(itertools.chain(*self._compute_name_tokens([item])))
- elif not item.kind.startswith('_') and not item.suffix and \
- item.kind not in ('country', 'full', 'inclusion'):
+ elif (not item.kind.startswith('_') and not item.suffix and
+ item.kind not in ('country', 'full', 'inclusion')):
token_info.add_address_term(item.kind,
itertools.chain(*self._compute_name_tokens([item])))
-
def _compute_housenumber_token(self, hnr: PlaceName) -> Tuple[Optional[int], Optional[str]]:
""" Normalize the housenumber and return the word token and the
canonical form.
return result
-
def _retrieve_full_tokens(self, name: str) -> List[int]:
""" Get the full name token for the given name, if it exists.
The name is only retrieved for the standard analyser.
return full
-
def _compute_name_tokens(self, names: Sequence[PlaceName]) -> Tuple[Set[int], Set[int]]:
""" Computes the full name and partial name tokens for the given
dictionary of names.
return full_tokens, partial_tokens
-
def _add_postcode(self, item: PlaceName) -> Optional[str]:
""" Make sure the normalized postcode is present in the word table.
"""
self.address_tokens: Dict[str, str] = {}
self.postcode: Optional[str] = None
-
def _mk_array(self, tokens: Iterable[Any]) -> str:
return f"{{{','.join((str(s) for s in tokens))}}}"
-
def to_dict(self) -> Dict[str, Any]:
""" Return the token information in database importable format.
"""
return out
-
def set_names(self, fulls: Iterable[int], partials: Iterable[int]) -> None:
""" Adds token information for the normalised names.
"""
self.names = self._mk_array(itertools.chain(fulls, partials))
-
def add_housenumber(self, token: Optional[int], hnr: Optional[str]) -> None:
""" Extract housenumber information from a list of normalised
housenumbers.
self.housenumbers.add(hnr)
self.housenumber_tokens.add(token)
-
def add_street(self, tokens: Iterable[int]) -> None:
""" Add addr:street match terms.
"""
self.street_tokens = set()
self.street_tokens.update(tokens)
-
def add_place(self, tokens: Iterable[int]) -> None:
""" Add addr:place search and match terms.
"""
self.place_tokens.update(tokens)
-
def add_address_term(self, key: str, partials: Iterable[int]) -> None:
""" Add additional address terms.
"""